Browse Variable Refrigerant Flow Systems (VRF or VRV)

Variable Refrigerant Flow Systems (VRF or VRV) - Expert Commentary

The Role Of ‘Smart’ HVAC In The Buildings Of The Future
The Role Of ‘Smart’ HVAC In The Buildings Of The Future

The last 18 months have seen an acceleration in digitalization across many aspects of work and home life. Home spaces have become workspaces, and commercial buildings have had to adapt to changed use and lower occupancy rates. Coupled with this, there is a growing need to dramatically reduce carbon emissions from buildings - according to the International Energy Agency (IEA), the buildings and construction sectors combined are responsible for over 30 percent of global energy consumption, and nearly 40 percent of carbon emissions. Installing separate systems This means that demand for a smarter approach to heating, ventilation and air conditioning (HVAC) management is crucial for building managers, who need to ensure that their properties can adapt to changed use, respond to the wellbeing of their occupants, and run efficiently to keep emissions as low as possible. Armed with this data, facility managers can take proactive steps to improve usage Of course, architects and developers have been installing separate systems to control HVAC for decades which have given building managers greater control and access to different areas of a site. However, with digitalization comes the addition of web-based platforms to allow these verticals to integrate seamlessly with each other, providing data on how efficiently and effectively a building operates through a single view application. Armed with this data, facility managers can take proactive steps to improve usage, which will see properties proactively react to the environmental and personal needs of their occupants. Centrally controlled lighting Many commercial buildings will already have a certain element of smart technology installed – from centrally controlled lighting and HVAC systems to remote management of security and energy management systems. However, it is often the case that these multiple applications are managed in silo. This means facilities managers don’t have a consolidated view of their data. In addition, not all managers will be using the data these devices produce to take steps to reduce the carbon footprint of their properties. Embracing smart technology – and a central control platform - gives building managers access to instant data on how their HVAC assets are performing in one place. This insight can be used to gain a thorough understanding of how the different systems in the building interact, and the external factors that may impact them. Effective building controls By using this data, operators can implement effective building controls to manage efficiencies By using this data, operators can implement effective building controls to manage efficiencies, identify maintenance issues, ensure the wellbeing of occupants, and inform future investment priorities. So, for example, if a building is now being used in a different way due to changed occupancy, the data will show the manager what needs to be done to ensure it is operating as efficiently as possible. We know that there will be increased demand for more flexible spaces as companies move towards remote or hybrid working models. It is likely that we will visit our offices less for day-to-day work and use them more as hubs to meet and collaborate. The ability to turn a traditional ‘bricks and mortar’ building into an agile asset that can learn and adapt to its surroundings will become increasingly important. Smart HVAC management Smart offices will become independently intelligent, learning how occupants use the space and services, adjusting lighting, HVAC and other systems to maximize health and comfort. Smart HVAC management will create a trend for ‘healthier’ buildings that will have a positive impact in terms of improved quality of life and wellbeing of occupants, ultimately resulting in higher productivity levels. In short, there has never been a better time to adopt smart HVAC technologies. Intelligent buildings that would have been unimaginable a few decades ago are now a reality. As buildings become smarter, they can learn how occupants use the space and services and proactively adjust lighting, HVAC and other systems to improve use, cut emissions and reduce energy consumption.

Increasing Energy Efficiency In Your Building Facility
Increasing Energy Efficiency In Your Building Facility

As our urban centers grow, so does our demand for key resources, such as energy. Currently, cities are accountable for over 60% of resource use and an estimated 70% of global carbon emissions. In the Middle East particularly, countries have experienced unprecedented population growth, increased economic activity and consequently, increases in energy consumption. Integration of sustainable systems Fortunately, industry leaders and governments are placing sustainability at the heart of regional plans for urban development. The integration of sustainable systems is no longer a value-added benefit, but rather a necessary requirement. I believe a vital element for sustainable development in our cities is energy management. Energy is a costly commodity representing an average of 25% of all operating costs in office buildings. This cost, however, can be reduced by using energy management to optimize HVAC systems employed in a building. Effective energy management Energy management involves proactive tracking, systemic management and thoughtful optimization of energy consumption in a building, with the goal of improving energy efficiency. The concept of energy efficiency takes into account a variety of factors; we must consider system design, quality of installation and maintenance, efficiency rates and personal use. If we assume a system is designed with greatest efficiency in mind, its effectiveness is still deeply impacted by installation, maintenance and use. ‘Performance drift’ issues One challenge we face with the efficiency of HVAC systems is ‘performance drift’ One challenge we face with the efficiency of HVAC systems is ‘performance drift’. When first installed, and even in the first few months, HVAC systems operate immaculately. Over time, however, component efficiency and system conditions ‘drift’ away from the originally installed operating curve, meaning that efficiency and performance of the system can degrade incrementally. The deteriorating performance of HVAC systems has consequences, such as unnecessary use of energy, resulting in higher costs and emissions, in addition to reduced comfort for building occupants. Energy efficient HVAC pumps In order to truly have an impact on energy consumption, a holistic approach must be adopted. Only by carefully examining and optimizing each part of the HVAC system, can we then find ways to improve it. In my experience with Armstrong Fluid Technology, in the last decade, the technology for HVAC pumps has been enhanced to provide up to 70% energy efficiency savings through demand-based control and parallel pumping technology. These innovations enable the pumps to operate at optimum levels, consuming as little energy as possible. Innovative smart technology Systems that incorporate innovative smart technology enable more accurate system performance analysis and optimization. Pumps can function as highly accurate flow meters that provide valuable insight for building managers and operators. Data from the intelligent connected pumps can be collected through active performance management software, which enables the HVAC system to learn, predict and optimize to deliver even greater energy efficiency and cost savings through maintained optimized performance. Systems incorporating innovative smart technology enable more accurate system performance analysis Active performance management software Active performance management software enables real time and historical data reporting that directly demonstrates system efficiency and savings. Given the global shift towards sustainable building construction, legislation on energy reporting is inevitable, therefore employing systems with this in-built capability can prove to be extremely beneficial in the future. The software can also help maintain client comfort at all times by enabling predictive maintenance. Systems can provide alerts when they detect faults, allowing for early replacement before a full breakdown. This can be particularly helpful in mission critical applications such as hospitals. Importance of analyzed data in system optimization Without the ability to analyze data, buildings managers and operators cannot properly optimize mechanical systems Evidently, collecting data is essential for many reasons, including preventing, and even reversing, the loss of energy efficiency. Without the ability to analyze data, buildings managers and operators cannot properly optimize mechanical systems, which results in unnecessary energy use, insufficient maintenance practices and any related costs. There may be hesitation in the industry to incorporate more sophisticated systems as they require initial investment, however, the returns from using more efficient mechanical systems are impressive. Executing energy upgrades for HVAC systems Simple payback on energy upgrade projects is usually reached within 3 to 5 years. Furthermore, energy savings continue for the life of the system. Properly executed energy upgrades deliver up to 40% savings on energy consumption related to HVAC operation. Savings on that level for a large facility can be impactful for business operations. Energy efficiency is not ‘visible’ but has the potential to have a transformative effect on climate change, if embraced on a large scale. If we consume energy only as we need to, then we consume less of it. This, in turn, reduces our consumption of fossil fuels and consequently our greenhouse gas emissions. Aside from short-term benefits, such as costs savings and increased operation efficiency, energy management has the ability to help conserve energy for generations to come. Embracing energy saving solutions If we embrace innovative energy saving solutions in the building services industry, then we can begin to make a difference. With the recent launch of plans for sustainable development, such as the Dubai Master Plan 2040, green infrastructure, supporting solutions, will thrive. The global shift towards embracing sustainability has made individuals and organizations call into question their impact on our planet. Embracing sustainability is no longer a preference but a strategic business approach that helps to create long-term value on a social, economic and environmental level. The role of energy efficiency, and the systems that enable it, will inevitably play a key role in creating more sustainable buildings, communities and cities.

Listen To Your Data And Use It To Achieve Your Business Goals In HVAC
Listen To Your Data And Use It To Achieve Your Business Goals In HVAC

Utilizing the latest in building connectivity, facility operators can uncover a wealth of data in their systems. The next step comes by leveraging that data with artificial intelligence (AI) and a suite of connected solutions. Data is analyzed to determine actionable items and achieve data-based outcomes that improve efficiencies, allow operators to meet budget goals, hit sustainability targets and deliver on occupants’ expectations. To make those high-level outcomes happen, collecting and using data correctly is proving to be critical. With the adoption of more smart building assets, operators are finding that they can finally understand the needs of their buildings and make informed decisions on their operation. Making better choices By helping facility operators make better choices, respond to immediate needs and plan strategically on multiple fronts, data creates value. But are operators of healthy buildings getting everything they can out of this data? Is it being nurtured to create all the efficiencies possible? The answers to those questions are usually no because there’s always more data to mine and more efficiencies to uncover. The answers to those questions are usually no because there’s always more data to mine With that in mind, facility operators need to be vigilant in their collection and use of data. There always seems to be more data to process and more value to squeeze out in an effort to reach or even exceed a facility’s business goals. This constant pressure to improve is creating new ways to use data to drive a building’s business outcomes ever higher. They include: Ensuring connectivity. Avoiding data overload. Using data to weigh competing goals. Learning progress tracking and reporting. Making smart decisions In general, the overarching concept is that listening to your data helps you make smart decisions. But there are questions about how to do it, whether one dataset is more important than another and how to make sense of it all. With those questions in mind, let’s look at each of these four points a little closer to find out how you can deliver better results. Every asset in your building, from the sensor that monitors occupancy in the third-floor conference room to the chiller unit that drives your entire HVAC system, needs to be connected to a central analytics hub. Doing so allows your system to review and analyze every angle of the operation with a goal of finding efficiencies and predicting needs. The overarching concept is that listening to your data helps you make smart decisions Possible building assets Here are a few helpful tips: Make sure you get data from all possible building assets. Recognize and overcome connectivity from legacy assets. Make sure differing OEM assets can speak to one another. And find an organizing platform to bring it all together. As your system begins collecting, sorting and analyzing data, another problem will emerge Remember, connectivity is a commodity. Is a retrofit possible at your facility? If so, then consider current efficiency and maintenance issues. As your system begins collecting, sorting and analyzing data, another problem will emerge: You have so much data you don’t know what to do with it all. That leads to questions of what information is important, and what isn’t. However, the real question is ‘How can I use all this information to meet my building’s business goals?’ Storing data forever It’s important to recognize that a smart building can collect thousands of datapoints every few minutes. So, understand that you will obtain a lot of data. Adopt a method to tag assets and define relationships that will help you make sense of all the data. Data analytics can help you sort, prioritize and take actions. Storing all data forever isn’t necessary, but you need baselines and historical benchmarks. Finally, be aware of the cost swell of storing data. You need to save only what’s important historically. Many times, building operators are caught in a tug-of-war over competing priorities. Meeting sustainability goals A long-term need may be maintaining safety while ensuring privacy in your facility One goal might be to successfully meet sustainability goals, while another might insist on running systems to meet narrow comfort constraints. Further, this tug-of-war may not be between two priorities; it might be between three or five or 10. The easiest solution is use data as your guide to a happy medium. Here are a few helpful tips: Recognize your immediate needs vs. long-term needs. For example, an immediate need may be addressing comfort requests from building occupants. A long-term need may be maintaining safety while ensuring privacy in your facility. Regardless of your needs, there will always be tradeoffs. Where can you find the right balance that aligns with your business goals? Steer your choices by using data analytics. Key Performance Indicators With your data already doing its work to give you insights, it’s critical to prove that the effort has been worth it. By understanding how to track progress and report on it, you will be able to help others understand the gains you’ve been making. From selecting and defining Key Performance Indicators (KPIs) to monitoring their fluctuations, tracking and reporting is how you show value in what might have otherwise been considered an intangible benefit. To that end, create a proof-of-progress report that you are pursuing your targets To that end, create a proof-of-progress report that you are pursuing your targets. Utilize your platform to see the big picture. And keep in mind that some progress might be invisible without analysis. Remember that not all analytics are equal. Canned reports might not suit your situation, so developing custom reports is extremely valuable. Reaching successful outcomes For example, a large building portfolio owner in the U.S. might track the monetary impact of open faults to justify capital spending. Or a facility owner in Australia may generate a National Australian Built Environment Rating System (NABERS) report to deliver updates to tenants. It’s worth noting that reports also might be required by building codes or requested by an internal accounting or compliance team. Listening to your data is critical in a smart building, and just as critical is letting that data drive you toward your business goals. To reach successful outcomes, you need to make sure the data is being properly collected and analyzed, and then presented in a way that helps tracking and reporting your progress. Once those elements have been successfully balanced, you’re on your way to getting the most out of data.

Latest Nortek Global HVAC news

Madison Industries Agrees to Acquire Nortek Air to Bolster Indoor Air Quality Offering
Madison Industries Agrees to Acquire Nortek Air to Bolster Indoor Air Quality Offering

Madison Industries, one of the world’s largest privately held companies, announced an agreement to acquire Nortek Air, a pioneer in providing critical air management, thermal and HVAC solutions. The deal adds strong Nortek brands such as Broan, NuTone, Reznor, StatePoint, Zephyr, Huntair and many others to Madison’s robust portfolio of indoor air quality solutions. “The global pandemic has put a spotlight on the importance of indoor air quality,” said Madison founder Larry Gies. “The Nortek Air businesses perfectly complement our portfolio of companies that provide solutions to improve the quality of indoor air. Our mission is to make the world safer, healthier and more productive and the addition of Nortek Air with its 6,000 passionate employees allows us to deliver even more of that mission. The Madison team is committed to improving indoor air quality and delivering solutions that provide healthy air for its customers.” air hygiene solutions Nortek Air, currently a subsidiary of Melrose Industries PLC, represents a range of world class products spanning custom and commercial air solutions for high-performance environments, residential and commercial HVAC and fresh air ventilation systems for homes. Its extensive family of brands represents a combined total of more than 390 years of experience providing solutions for a variety of markets including healthcare, education, data center, pharmaceutical, industrial, residential, office and clean room. Its technology not only delivers improved air quality for indoor spaces, but also increases energy efficiency, reduces operating costs, maximizes performance, lowers noise pollution and ensures system reliability. The addition of Nortek Air positions Madison Industries to better serve its customers by providing a full suite of air hygiene solutions to improve indoor air quality for the health and longevity of building occupants.The acquisition is slated to close this summer.

HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market
HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market

Manufacturers continue to make improvements in heat-pump technology, including higher efficiencies, contractor-friendly designs, and innovative extras like two-stage compressors that allow them to run at lower speeds and cut down energy use and homeowners’ bills. Below is a sampling of six of the latest products to hit the heat pump market. Nortek Global HVAC introduced the W-Series of air conditioning and heat pump equipment for residential and light commercial applications, completing its redesign of Gibson®, NuTone®, and Frigidaire® branded 1.5- to 5-ton, single-phase air conditioning units and heat pumps. The redesign offers contractors a ‘good-better-best’ strategy (the premium F-Series, the mid-range E-Series, and the economically-priced W-Series) to accommodate varying consumer price ranges. Coil-Protecting wire guard The W-Series heat pump is available in 14- and 16-SEER models. Standard features include Copeland scroll compressors and a liquid line filter-drier for field installation in an accessible position to facilitate easy periodic change-outs. It also has a coil-protecting wire guard that adds cabinet structural integrity and holds a plastic mesh in place to safeguard against hail and accidental contact damage, plus an anti-corrosive polymer drain pan with more drainage holes to eliminate potential standing water. On the unit’s exterior cabinet, above the refrigerant access port, is a weather-proof QR code called ‘Charge Me’ that can be scanned to access Nortek’s charge assist tool. “The new W-series of heat pumps recently introduced by Gibson, Frigidaire, and NuTone features a high-tech way to charge,” said Dave Garvin, product manager, Nortek Global HVAC. Variable Speed Heat Pump Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat “The proprietary website helps account for subcooling, fixed orifices, thermostatic expansion valves, ambient temperature at time of charging, lineset length, and other variables that can trip up contractors when charging any heat pump brand.” The Rheem® Prestige® Series EcoNet®-Enabled Variable Speed Heat Pump features a contractor-friendly design, which means expanded valve space and triple service access, for fast and easy install and repairs. Corner-service access allows optimal access to internal components, while individual louver panels speed coil cleaning and cabinet reassembly. Plus, Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat, which provides control, monitoring, and one-touch alert capability. Proper installation and reduced time “Rheem’s Prestige Heat Pump powered by our EcoNet Smart Thermostat keeps contractors in control,” said Ryan Teschner, product manager for Rheem Mfg. “From real-time alerts and system notifications to a charge mode capability, which allows for proper installation and reduced time on the job, Rheem’s heat pump increases job site efficiencies and reduces labor costs for contractors.” The hybrid electric Voltex® from A. O. Smith has an energy factor (efficiency based on the amount of hot water produced per unit of fuel consumed over a typical day) of 2.3, and is Energy Star® qualified. “Heat pump water heaters use electricity to pull heat from the surrounding air rather than generating their own heat,” said Brandon Stepanek, national field marketing manager at A. O. Smith. Reducing greenhouse gas emissions Carrier’s Hybrid Heat systems automatically switch between electric and gas heating “This means that they can be a logical choice for dedicated green home builders interested in enhancing energy efficiency. Because a heat pump water heater uses energy efficiently, it can save customers up to 10 percent on energy bills, which adds up to thousands of dollars over the life of the water heater,” he continued. “The significant reduction in electricity use also has a direct effect on reducing greenhouse gas emissions.” Carrier’s Performance™ Series heat pumps offer a range of efficiencies that start at 14 SEER and reach 17.5 SEER and up to 9.5 HSPF. Combining a gas furnace, an electric heat pump, and a compatible thermostat, Carrier’s Hybrid Heat systems automatically switch between electric and gas heating to optimize the efficiency of each fuel source, helping defend homeowners against utility cost fluctuations. They have Energy Star designation. Carrier indoor furnace “Our microtube coil technology saves space and provides lasting comfort with its corrosion-resistant construction,” the company stated. “In addition, some models include innovative extras, like a two-speed compressor for added benefits like higher efficiency and even, consistent comfort. When installed with a custom-matched Carrier indoor furnace or fan coil and a Côr® Wi-Fi® thermostat, our two-stage heat pumps can operate on low stage up to 80 percent of the time to keep airflow and temperatures even and consistent while adding humidity control during cooling operation.” Heating operation is rated down to minus 5˚F outdoor temperature Fujitsu General America Inc. recently debuted the RGLX Series, three medium-static pressure ducted indoor units for the single-zone Halcyon mini split line. They have sufficient static pressure to heat or cool a whole house. Heating operation is rated down to minus 5˚F outdoor temperature. The 12,000-, 18,000-, and 24,000-Btuh models are Energy Star qualified. V-Shaped heat exchanger Units are available in seven sizes ranging from 12,000 to 48,000 Btuh, with efficiency ratings up to 21.3 SEER. The evaporators are slim enough to fit most ceiling spaces, making them ideal for hidden installations, while the condensing units can be installed below a window or in a narrow space. The new models can be installed in applications that require static pressure up to 0.80 inches of water column and offer maximum piping lengths of up to 246 feet. A built-in drain pump with 33.5 feet of vertical lift comes standard. “The combination of the V-shaped heat exchanger, air stabilizer, and the energy-efficient DC fan motor results in high efficiency and quiet operation,” Fujitsu wrote in the product specs. Customized indoor comfort The Goodman GSZC18 Heat Pump features the next-generation Copeland Scroll™ two-stage compressor coupled with Goodman’s ComfortBridge® communicating technology to deliver up to 19 SEER and 10 HSPF performance. ComfortBridge ‘off-the-wall’ technology gives contractors more installation options and intelligent controls. It works with any thermostat, including single-stage ones. ComfortBridge constantly gathers data, making automatic adjustments for peak performance ComfortBridge constantly gathers data, making automatic adjustments for peak performance, using the minimum energy needed for consistent, customized indoor comfort. A companion CoolCloud™ app connects technicians wirelessly via Bluetooth to ComfortBridge. Advanced ComfortAlert™ Diagnostics constantly monitor the system, reducing failures and pinpointing trouble spots. “Our 18-SEER heat pumps provide high-efficiency, energy-saving indoor comfort with the ease of installation as compared to less sophisticated products,” said Cory Gottfredson, senior product manager, Outdoor Split Systems for Goodman. Compressor crankcase heater “We have incorporated ComfortBridge technology to optimize installation while allowing homeowners to use any thermostat. This truly enhances both operation and installation, freeing contractors from hassles and leaving money in the hands of homeowners where it belongs.” The scroll compressor inside the GSZC18 is designed with fewer moving parts, and the high-efficiency, two-speed electronically commutated condenser fan motor with advanced fan design provides quiet airflow. Other features include SmartShift® technology with short-cycle protection, a bi-flow liquid-line filter-drier, suction line accumulator, high- and low-pressure switches, coil and ambient temperature sensors, a transformer, compressor crankcase heater, high-capacity muffler, and a color-coded terminal strip for non-communicating set-up.

Nortek Adds CDU1200 Coolant Distribution Unit To Its ServerCool Data Center Liquid Cooling Product Line
Nortek Adds CDU1200 Coolant Distribution Unit To Its ServerCool Data Center Liquid Cooling Product Line

Nortek™ Air Solutions introduces the CDU1200, a 1,200-kW coolant distribution unit (CDU) that’s the single most powerful, compact CDU on the planet, and the newest addition to its ServerCool™ data center liquid cooling product line. The CDU1200’s small 58 (d) x 35 (w)-inch (1,475 x 900-mm) footprint supplies an industry-first 1.2-MW of cooling capacity in a density of 14.6-ft2 (1.3-m2) that helps attain optimum power usage effectiveness (PUE). The CDU1200 is a perfect new construction or retrofit liquid cooling solution for high performance computing (HPC) and enterprise data centers, as well co-location, corporate network edge, government, research and other data center formats. Superior Pumping Power In an age where liquid cooling is required to support growing chip power densities, the CDU1200’s kW/ft2 capacity is unrivaled when directly compared to competitor products. The CDU1200’s compatibility with existing ServerCool CDU’s, such as the CD6 300-kW floor mount and the CD5 50-kW rack-mount, enables modular growth of existing systems. The CDU1200’s superior pumping power also allows it to be placed outside of the white space. The CDU1200 offers two redundant 15-hp stainless steel pumps with many energy-efficient features The CDU1200’s highly-efficient heat exchanger technology thermally transfers primary loop cooling to the secondary loop’s liquid cooling circuit for distribution to IT rack cold plates. The CDU1200 offers two redundant 15-hp stainless steel pumps with many energy-efficient features including electronically-commutated (EC) motors and variable frequency inverters that efficiently modulate optimum performance flow rates for the system’s 320-gpm (1,211-L/m) capacity. Liquid Cooling Control Experience System water purity is optimized with a standard 50-micron washable ultra filter/strainer and an optional ultraviolet (UV) light biological contaminant sterilization system. The CDU1200 has an onboard programmable logic controller (PLC)-based microprocessor using custom-written, proprietary software based on ServerCool’s decades of liquid cooling control experience. The unit’s control infrastructure features compatibility and plug-and-play connections with Modbus The system’s full instrumentation of triple-redundant pressure transducers and temperature sensors offer unprecedented pinpoint control and monitoring of vital statistics, such as primary and secondary loop discharge/return temperatures, data hall temperature and humidity, pump PSI and many other critical parameters. Operation parameters are accessed from the CDU1200’s user-friendly, seven-inch (17-cm) color LED touchscreen HMI or a remote monitor. The unit’s control infrastructure features compatibility and plug-and-play connections with Modbus, BACnet™ and other building automation system (BAS) protocols. Computer-Automated Testing System The CDU1200 has a narrow Delta-T temperature which helps facilitate eligibility for the Green500 supercomputers list. It’s rated nominally with a 90°F (32°C) primary and a 7.2°F (4°C) approach Delta-T and exceeds 2.5-MW capacity with an approach of 14.4°F (8°C). Nortek’s commitment to the CDU1200’s quality control and short lead times is illustrated by a newly-built state-of-the-art, dedicated production line established at Nortek Global HVAC’s world-class 350,000-square-foot (32,516-m2) Dyersburg, Tennessee., manufacturing facility. The Demand Flow Technology-certified plant uses quality control and reliability processes, such as multiple checkpoints each with the unit’s CAD drawings on a computer monitor. A 100-percent computer-automated testing system prevents human error. Dripless Smart Connector Accessories The CDU1200 design also includes: Requires less life space than a CRAC when converting a data center to higher cooling and higher density liquid cooling; Robotically welded, corrosion-resistant ASIS 316 stainless steel is used instead of some competitors’ plastic piping that potentially melts or leaks easily under higher pressures. Piping infrastructure is subjected to a stringent series of factory pressure and hydraulic quality control testing; Maintenance is minimal and requires only periodic filter/strainer checks; Modulating actuator valve can control dew point and prevent condensation; Compatible with all brands of chillers, evaporative coolers, cooling towers and other chilled water central plant formats; User-definable LED alarms for leak detection/prevention and performance criteria; Fixed flow meters on primary and secondary circuits; Two-year standard warranty–one of the industry’s longest; Optional manifolds and dripless smart connector accessories fit all cold plate piping configurations. ServerCool products are ISO-9001:2015-certified and backed by Nortek’s proven 20 years of mission critical experience, design and customer support.

vfd