Heat Pumps - Expert Commentary

Now Is The Time To Prepare For A Boom In Heat Pump Sales
Now Is The Time To Prepare For A Boom In Heat Pump Sales

As the UK continues to battle through the coronavirus crisis, HVAC business owners and installers can be putting some of their enforced downtime to good use. This period of subdued trading is a rare opportunity to get into better shape for when economic activity picks up. One way of doing this is by sharpening the focus on markets which promise strong growth – and few markets are growing faster than that for heat pumps.   The potential here is huge. Some 28,000 heat pumps are currently installed in the UK every year, and before the pandemic this number was rising annually at a rate of 15-30%. That equates to sales doubling every three to five years. New-builds account for the majority of those sales, but 30% are retrofits, and about 30% of those retrofits are in private residences. This means there’s a big opportunity for doing conversions from oil boilers to heat pumps at rural homes not connected to the gas grid. The ‘New Normal’ and Heat Pumps It is only realistic, of course, to expect a lingering dip in HVAC sales of all kinds, including heat pumps, until the post-pandemic world gets back on its feet. But when we do turn the corner into the ‘new normal’, heat pump sales will again climb strongly. One reason for this is consumer demand, the other is government policy. End-users are now increasingly aware of the dangers and disruptions threatened by carbon emissions and climate change – informally known as ‘the Blue Planet Effect’ – and more are being guided by their consciences to make environmentally-responsible heating choices. An Expected Spike In Demand Many end-users are also encouraged by the prospect of receiving payments from the government through the Domestic RHI tariff. When we do turn the corner into the ‘new normal’, heat pump sales will climb strongly If RHI tariffs are the carrot, however, the government is also going to wield a big stick. The Chancellor’s spring statement last year dropped the bombshell that low-carbon heating systems, not fossil-fuel heating, should be installed in all new homes built after 2025. Though this policy might perhaps get slightly delayed and diluted, there can be no doubting that radical change is on the way.           With all this in the pipeline, the industry should be preparing now to cope with the increased demand. But there’s some way to go: of the UK’s 120,000 registered gas engineers, merely 600 or so are MCS-registered to install heat pumps. Many more will be needed. MCS Certification Some installers are already recognizing this opportunity. Some 28,000 heat pumps are currently installed in the UK every year, and before the pandemic this number was rising annually at a rate of 15-30% This is evident in the heightened level of interest in the one-day introductory heat pump courses run nationwide by the Viessmann Academy. These courses provide a useful overview of what heat pump installations involve, helping participants decide whether or not they would like to go on to qualify with the MCS quality assurance scheme. This is a crucial decision, because having MCS certification is an obligation when installing equipment eligible for Domestic RHI payments. Some course participants decide to take the next step to MCS certification straight away, others decide to wait a while – but standing still in a fast-moving market can mean getting left behind! F-Gas Certification So what else must HVAC businesses and installers consider about heat pumps, in order to stay ahead of the game? In addition to MCS certification, F-Gas certification is also necessary when split air source heat pumps are installed. This is because the outdoor and indoor units have to be connected on-site with refrigerant pipework. Some installers choose to get F-Gas certified themselves, others sub-contract this part of the job to someone who’s suitably qualified. Of the UK’s 120,000 registered gas engineers, merely 600 or so are MCS-registered to install heat pumps It is possible to sidestep this need, however, when it is appropriate to install a monobloc heat pump – and the widening choice and affordability of monobloc designs is making them appropriate for a wider range of properties. A good example of this is Viessmann’s new Vitocal 100-A, an outdoors unit which has no need for a complementary indoor unit and is also easy to install because most components are integrated in the unit. New, compact and affordable air source heat pumps such as this, offering much-needed space-saving solutions for urban homes, are another reason why the heat pump market will boom. The Challenges Of Heat Pump Installation Though technological advances are making things easier, installing a heat pump isn’t ever going to be quite as straightforward as replacing an old boiler with a new one. Before starting an installation, first it is necessary to assess whether a heat pump is suitable for the property. This means checking that the property is well-enough insulated; checking the existing system’s radiators, which may need supplementing or replacing with bigger radiators or underfloor heating because of the lower flow temperatures of a heat pump system; and calculating the required size of the heat pump according to the building’s heat loss (and not including hot water demand). This period of subdued trading is a rare opportunity to get into better shape for when economic activity picks up At the installation stage itself, much of the work will be familiar to boiler installers, though weather compensating controls are obligatory for all MCS-approved work and as part of building regulations Part L. It’s also important to note that planning permission requires minimum distances between the heat pump’s outdoor unit, the plot’s borders, and neighboring properties. If this seems complicated, it doesn’t have to be: some heat pump manufacturers provide a calculator to simplify the task. Now Is The Time To Be Proactive Just as installers need a little time to assess whether a property should switch from a boiler to a heat pump, end-users also need a little thinking time, to consider adopting a technology new to them. By being proactive, HVAC businesses and installers can reap what they sow When customers get in touch because their existing boiler has broken down, the pressure for a quick fix can rule this out. But right now, when many of us have time on our hands, there’s the chance to inform customers of alternative heating solutions before their boiler needs replacing. Taking such pre-emptive action, by emailing information or mailing leaflets to customers, does require a little effort, but at least now there’s the time to do it. We are heading into a new era which will see boiler sales decline while heat pump sales rise. By making preparations for these profound changes, and by being proactive, HVAC businesses and installers can reap what they sow.

Strategic Electrification And The HVAC Industry’s Role
Strategic Electrification And The HVAC Industry’s Role

Strategic electrification encompasses a host of solutions aimed at decarbonizing Earth’s atmosphere, decreasing pollution and reducing the costs of modern comfort and technology. Also known as “beneficial electrification”, this movement requires increased energy efficiency and end uses powered with electricity from cleaner grids and renewable sources. The movement will transform both the built environment and society’s modes of transportation. Despite the complexity of its challenges, strategic electrification can no longer be dismissed as a niche or a possibility of the far future. The movement is happening now, driven by a mix of public and private entities on various levels proceeding along voluntary and mandatory paths. What Is Being Done? In the absence of formal federal action on climate change — including the Clean Power Plan and Paris Accord — cities, states, municipalities and utilities are continuing to develop their own decarbonization strategies. There are now nearly 450 cities in the U.S. that have committed to 80% carbon reductions by 2050 The goal is to achieve this through a variety of policy mandates such as taxes, building codes and portfolio standards. This is in addition to voluntary approaches that can include utility rebates and construction decisions such as choosing a passive house design; updated building efficiency targets; system-specific electric mandates; and comprehensive gas bans. Just recently, Santa Cruz became the 30th city or county in California to enact a measure limiting or prohibiting the use of natural gas in new construction, according to an article published by Yale Environment 360.  The Carbon Neutral Cities Alliance Many organizations have rallied around these strategies. For instance, the Carbon Neutral Cities Alliance (CNCA) is one of the many organizations that have rallied around the strategies that must be employed to reach carbon neutrality. CNCA is a collaboration of leading global cities working to cut greenhouse gas emissions by 80-100% by 2050 or sooner. They’ve adopted some of the most aggressive GHG reduction targets undertaken anywhere by any city. Mitsubishi Electric Trane HVAC US was one of the organization’s first HVAC participants, providing expertise and product knowledge to support their continued efforts. Major CNCA cities include New York City, NY, San Francisco, CA and Washington, DC. If We Don’t Electrify, How Could That Impact the Environment? Cities are working aggressively to reduce fossil fuel use because our CO2 levels are trending in a dangerous direction. As a naturally-occurring greenhouse gas (GHG), CO2 helps earth retain enough warmth to sustain life but too much can lead to excessive warming. If our global energy demand grows and we continue to use fossil fuels in the same way, the average amount of atmospheric CO2 will likely exceed 900 ppm by the year 2100 For 800,000 years, before the Industrial Revolution and the widespread adoption of fossil fuel-burning technologies, the highest global average atmospheric amount of CO2 was 300 parts per million (ppm), according to the National Oceanic and Atmospheric Administration (NOAA). 407 ppm is the current average amount, per a trend report published by the Global Carbon Project. The NOAA also reports that if our global energy demand grows and we continue to use fossil fuels in the same way, the average amount of atmospheric CO2 will likely exceed 900 ppm by the year 2100. As atmospheric CO2 increases, the global temperature also increases, potentially reaching 1.5° C above pre-industrial levels between 2030 and 2052. At this temperature, the majority of climate scientists expect environmental changes to include rising sea levels, increased flooding, droughts, extreme heat, wildfires and new risks to human lives, infrastructure and biodiversity. According to the U.S. Energy Information Administration, buildings (residential and commercial) account for nearly 40% of the nation’s total energy demand — and about 75% of all electricity use. Where Does The HVAC Industry Fit In? Worldwide, all-electric heat pumps are the most popular technology for decarbonizing heating and cooling. VRF heat pumps and heat-recovery systems contribute to lower carbon footprints and benefit strategic electrification by reducing overall costs for commercial building owners, consumers and society. Instead of burning fossil fuels, a VRF heat pump provides heating to zones by introducing ambien heat its outdoor unit extracts from the air or a nearby water source. During cooling, VRF heat pumps reverse this process as indoor units transfer heat from zones to the outdoor unit which then rejects the heat. Until recently, some specifiers in northern regions felt obligated to select a gas-powered furnace or electric resistance for heating systems due to air-source heat pump derating at sub-freezing temperatures. Today that’s not the case. Mitsubishi Electric Trane HVAC US' SUZ universal outdoor unit uses Hyper-Heating INVERTER technology Air-source VRF systems now use advances such as flash-injection technology in the compressor to offer unprecedented levels of capacity and efficiency at low outdoor ambient temperatures. This creates opportunities to replace fossil-fuel-burning equipment in more regions than before. VRF heat pumps and heat-recovery systems help building owners, architects and engineers solve challenges associated with decarbonizing the electric grid as well as emerging building codes, standards and legislation related to decarbonization. Federal standards and programs like ENERGY STAR®, tax credits and utility rebates will continue accelerating adoption of energy-efficient alternates to fossil fuel burning systems. The Decarbonization Challenge The decarbonization challenge is significant and complex, but change is happening now. At Mitsubishi Electric Trane HVAC US, we’re passionate because we recognize the dangers of climate change and acknowledge the significant role we can play in decarbonization efforts. The decarbonization challenge is significant and complex, but change is happening now Legislation, codes, financial incentives, product innovations and environmental advocacy encourage the transition from fossil-fuel-burning equipment and will continue to evolve. We’re doing our part by researching, developing, manufacturing and providing training for the all-electric heat pumps and VRF systems that enable society to enjoy improved comfort while reducing both costs and carbon emissions. Ultimately, strategic electrification can only be successful if it’s associated with personal comfort and prosperous communities. 

Latest Nortek Global HVAC news

Nortek Adds CDU1200 Coolant Distribution Unit To Its ServerCool Data Center Liquid Cooling Product Line
Nortek Adds CDU1200 Coolant Distribution Unit To Its ServerCool Data Center Liquid Cooling Product Line

Nortek™ Air Solutions introduces the CDU1200, a 1,200-kW coolant distribution unit (CDU) that’s the single most powerful, compact CDU on the planet, and the newest addition to its ServerCool™ data center liquid cooling product line. The CDU1200’s small 58 (d) x 35 (w)-inch (1,475 x 900-mm) footprint supplies an industry-first 1.2-MW of cooling capacity in a density of 14.6-ft2 (1.3-m2) that helps attain optimum power usage effectiveness (PUE). The CDU1200 is a perfect new construction or retrofit liquid cooling solution for high performance computing (HPC) and enterprise data centers, as well co-location, corporate network edge, government, research and other data center formats. Superior Pumping Power In an age where liquid cooling is required to support growing chip power densities, the CDU1200’s kW/ft2 capacity is unrivaled when directly compared to competitor products. The CDU1200’s compatibility with existing ServerCool CDU’s, such as the CD6 300-kW floor mount and the CD5 50-kW rack-mount, enables modular growth of existing systems. The CDU1200’s superior pumping power also allows it to be placed outside of the white space. The CDU1200 offers two redundant 15-hp stainless steel pumps with many energy-efficient features The CDU1200’s highly-efficient heat exchanger technology thermally transfers primary loop cooling to the secondary loop’s liquid cooling circuit for distribution to IT rack cold plates. The CDU1200 offers two redundant 15-hp stainless steel pumps with many energy-efficient features including electronically-commutated (EC) motors and variable frequency inverters that efficiently modulate optimum performance flow rates for the system’s 320-gpm (1,211-L/m) capacity. Liquid Cooling Control Experience System water purity is optimized with a standard 50-micron washable ultra filter/strainer and an optional ultraviolet (UV) light biological contaminant sterilization system. The CDU1200 has an onboard programmable logic controller (PLC)-based microprocessor using custom-written, proprietary software based on ServerCool’s decades of liquid cooling control experience. The unit’s control infrastructure features compatibility and plug-and-play connections with Modbus The system’s full instrumentation of triple-redundant pressure transducers and temperature sensors offer unprecedented pinpoint control and monitoring of vital statistics, such as primary and secondary loop discharge/return temperatures, data hall temperature and humidity, pump PSI and many other critical parameters. Operation parameters are accessed from the CDU1200’s user-friendly, seven-inch (17-cm) color LED touchscreen HMI or a remote monitor. The unit’s control infrastructure features compatibility and plug-and-play connections with Modbus, BACnet™ and other building automation system (BAS) protocols. Computer-Automated Testing System The CDU1200 has a narrow Delta-T temperature which helps facilitate eligibility for the Green500 supercomputers list. It’s rated nominally with a 90°F (32°C) primary and a 7.2°F (4°C) approach Delta-T and exceeds 2.5-MW capacity with an approach of 14.4°F (8°C). Nortek’s commitment to the CDU1200’s quality control and short lead times is illustrated by a newly-built state-of-the-art, dedicated production line established at Nortek Global HVAC’s world-class 350,000-square-foot (32,516-m2) Dyersburg, Tennessee., manufacturing facility. The Demand Flow Technology-certified plant uses quality control and reliability processes, such as multiple checkpoints each with the unit’s CAD drawings on a computer monitor. A 100-percent computer-automated testing system prevents human error. Dripless Smart Connector Accessories The CDU1200 design also includes: Requires less life space than a CRAC when converting a data center to higher cooling and higher density liquid cooling; Robotically welded, corrosion-resistant ASIS 316 stainless steel is used instead of some competitors’ plastic piping that potentially melts or leaks easily under higher pressures. Piping infrastructure is subjected to a stringent series of factory pressure and hydraulic quality control testing; Maintenance is minimal and requires only periodic filter/strainer checks; Modulating actuator valve can control dew point and prevent condensation; Compatible with all brands of chillers, evaporative coolers, cooling towers and other chilled water central plant formats; User-definable LED alarms for leak detection/prevention and performance criteria; Fixed flow meters on primary and secondary circuits; Two-year standard warranty–one of the industry’s longest; Optional manifolds and dripless smart connector accessories fit all cold plate piping configurations. ServerCool products are ISO-9001:2015-certified and backed by Nortek’s proven 20 years of mission critical experience, design and customer support.

Nortek Global Partners With Humidity Solutions To Distribute The Vapac Electrode Boiler Steam Humidifiers
Nortek Global Partners With Humidity Solutions To Distribute The Vapac Electrode Boiler Steam Humidifiers

From April 2019, Humidity Solutions based in Leatherhead will be sole UK distributor for the Vapac range of electrode boiler steam humidifiers. The knowledge and expertise of both companies combine to enable Vapac humidifiers to be offered to the market with a full package of support services. These include: Stock availability of standard units, consumables and spares Free design, site surveys and quotations Technical telephone support Servicing and maintenance Training and familiarization courses at the Leatherhead facility Nortek Global HVAC are confident that their partnership with Humidity Solutions will provide an even better customer service experience.

Nortek Groups Ambirad, Airbloc, Benson, And Reznor Under A Single Brand: Reznor
Nortek Groups Ambirad, Airbloc, Benson, And Reznor Under A Single Brand: Reznor

From February 2018, HVAC brands, Ambirad, Airbloc, Benson, and Reznor will be brought together under a single brand: Reznor. Each of these brands forms part of Nortek Global HVAC UK Ltd, and by combining their respective offerings, the business simplifies the customer experience by providing a single point of contact for all HVAC solutions. The HVAC brand transition coincides with a number of new product developments, and a portfolio that is now fully compliant with the Energy related Products (ErP) regulations. Delivering Superior Customer Experience Simon Parker, President and General Manager of Nortek Global HVAC UK Ltd’s Light Commercial Division heads up the Reznor brand in the UK and beyond. He comments: “We want to better serve our customers. By offering a diverse but cohesive portfolio, we can offer clarity for our customers by taking out complexity and portfolio duplications.” By unifying under the Reznor brand, we can commit to meeting our customers’ expectations" “We are focused on becoming a solution provider, rather than just a product supplier. By unifying under the Reznor brand, we can commit to meeting our customers’ expectations, delivering a superior customer experience, and building upon Reznor to become the preferred HVAC brand.” “The move to Reznor has been addressed with great care so that we do not create disruption,” explains Parker. “Existing warranties and maintenance contracts in the other brand names will be honored. Our customers will be notified about our strategic intent and how that will affect them. We believe it’s a positive move for all concerned.” ErP Compliant Product Offering With one dominant brand under Reznor, the company is looking to create economies of scale and to invest further in R&D to keep new products coming to market, as well as improving on customer service. Andrew Field will be Reznor’s dedicated National Sales Manager for the UK. He will lead a team of area sales and business development managers. Parker adds that specifying and buying Reznor products will be made easier with an updated online presence: “Moving from a multiple brand setting to a single leading brand for UK will be reflected into our online presence. We want to make it easier to do business with us, so we opted for a ‘pre-sales’ portal and a complimentary ‘post-sales’ portal to fully serve our site visitors. Both portals will reflect our renewed proposition, be fully up-to-date on our 2018 ErP compliant product offering, and be easily accessible via mobile technology.”

vfd