Heat Pumps - Expert Commentary

Increasing Energy Efficiency In Your Building Facility
Increasing Energy Efficiency In Your Building Facility

As our urban centers grow, so does our demand for key resources, such as energy. Currently, cities are accountable for over 60% of resource use and an estimated 70% of global carbon emissions. In the Middle East particularly, countries have experienced unprecedented population growth, increased economic activity and consequently, increases in energy consumption. Integration of sustainable systems Fortunately, industry leaders and governments are placing sustainability at the heart of regional plans for urban development. The integration of sustainable systems is no longer a value-added benefit, but rather a necessary requirement. I believe a vital element for sustainable development in our cities is energy management. Energy is a costly commodity representing an average of 25% of all operating costs in office buildings. This cost, however, can be reduced by using energy management to optimize HVAC systems employed in a building. Effective energy management Energy management involves proactive tracking, systemic management and thoughtful optimization of energy consumption in a building, with the goal of improving energy efficiency. The concept of energy efficiency takes into account a variety of factors; we must consider system design, quality of installation and maintenance, efficiency rates and personal use. If we assume a system is designed with greatest efficiency in mind, its effectiveness is still deeply impacted by installation, maintenance and use. ‘Performance drift’ issues One challenge we face with the efficiency of HVAC systems is ‘performance drift’ One challenge we face with the efficiency of HVAC systems is ‘performance drift’. When first installed, and even in the first few months, HVAC systems operate immaculately. Over time, however, component efficiency and system conditions ‘drift’ away from the originally installed operating curve, meaning that efficiency and performance of the system can degrade incrementally. The deteriorating performance of HVAC systems has consequences, such as unnecessary use of energy, resulting in higher costs and emissions, in addition to reduced comfort for building occupants. Energy efficient HVAC pumps In order to truly have an impact on energy consumption, a holistic approach must be adopted. Only by carefully examining and optimizing each part of the HVAC system, can we then find ways to improve it. In my experience with Armstrong Fluid Technology, in the last decade, the technology for HVAC pumps has been enhanced to provide up to 70% energy efficiency savings through demand-based control and parallel pumping technology. These innovations enable the pumps to operate at optimum levels, consuming as little energy as possible. Innovative smart technology Systems that incorporate innovative smart technology enable more accurate system performance analysis and optimization. Pumps can function as highly accurate flow meters that provide valuable insight for building managers and operators. Data from the intelligent connected pumps can be collected through active performance management software, which enables the HVAC system to learn, predict and optimize to deliver even greater energy efficiency and cost savings through maintained optimized performance. Systems incorporating innovative smart technology enable more accurate system performance analysis Active performance management software Active performance management software enables real time and historical data reporting that directly demonstrates system efficiency and savings. Given the global shift towards sustainable building construction, legislation on energy reporting is inevitable, therefore employing systems with this in-built capability can prove to be extremely beneficial in the future. The software can also help maintain client comfort at all times by enabling predictive maintenance. Systems can provide alerts when they detect faults, allowing for early replacement before a full breakdown. This can be particularly helpful in mission critical applications such as hospitals. Importance of analyzed data in system optimization Without the ability to analyze data, buildings managers and operators cannot properly optimize mechanical systems Evidently, collecting data is essential for many reasons, including preventing, and even reversing, the loss of energy efficiency. Without the ability to analyze data, buildings managers and operators cannot properly optimize mechanical systems, which results in unnecessary energy use, insufficient maintenance practices and any related costs. There may be hesitation in the industry to incorporate more sophisticated systems as they require initial investment, however, the returns from using more efficient mechanical systems are impressive. Executing energy upgrades for HVAC systems Simple payback on energy upgrade projects is usually reached within 3 to 5 years. Furthermore, energy savings continue for the life of the system. Properly executed energy upgrades deliver up to 40% savings on energy consumption related to HVAC operation. Savings on that level for a large facility can be impactful for business operations. Energy efficiency is not ‘visible’ but has the potential to have a transformative effect on climate change, if embraced on a large scale. If we consume energy only as we need to, then we consume less of it. This, in turn, reduces our consumption of fossil fuels and consequently our greenhouse gas emissions. Aside from short-term benefits, such as costs savings and increased operation efficiency, energy management has the ability to help conserve energy for generations to come. Embracing energy saving solutions If we embrace innovative energy saving solutions in the building services industry, then we can begin to make a difference. With the recent launch of plans for sustainable development, such as the Dubai Master Plan 2040, green infrastructure, supporting solutions, will thrive. The global shift towards embracing sustainability has made individuals and organizations call into question their impact on our planet. Embracing sustainability is no longer a preference but a strategic business approach that helps to create long-term value on a social, economic and environmental level. The role of energy efficiency, and the systems that enable it, will inevitably play a key role in creating more sustainable buildings, communities and cities.

Training Is The Key To The UK Government’s Heat Pump Promise
Training Is The Key To The UK Government’s Heat Pump Promise

Forget the fact that heat pump installations in the average home could cost several thousand pounds more than a conventional gas boiler and that fully insulating those homes will add even greater cost to the homeowner. It’s not really the cost issue that could be the only potential bump in the road on the way to the target set by the UK Government, because a more pressing problem to solve will be the shortage of trained ‘green’ heating engineers that will be the key to delivery of the plan. Gas boiler production I’m sure I’m not alone within the industry in adding my support to any drive that leads to a more effective use of environmentally responsible sources of energy for home heating. And following the news that ministers are currently discussing a cut off date of 2035 for all domestic gas boiler production, with an earlier 2025 ban on their installation in new homes, it is encouraging to think that technologies with which we in the industry have been working for a decade or more, will finally become the norm, rather than the green exception. However supportive I and colleagues in the sector might be, we should not shy away from challenging the Government on the delivery of the targets it has announced, because currently we haven’t heard enough in the Government’s Heating and Buildings Strategy about the market’s skills shortage. Heat source technologies At Ameon we’ve been working with green technologies for over a decade, on large scale public sector The truth is that there are simply not enough heating engineers currently who are experienced in the installation of alternative heat source technologies, such as ground or air source heat pumps, and given that tens of thousands of new or re-skilled engineers will be required if the Government’s plan to install 600,000 heat pumps per year by 2028 is to be achieved, then the drive needs to be supported by the associated training provisions to help it meet its goal. At Ameon we’ve been working with green technologies for over a decade, on large scale public sector and residential developments but I feel that aside from building services infrastructure companies like ourselves and others in our sector, there isn’t currently a large enough skills base and therefore the infrastructure needs to be put in place to be able to train enough people to carry out the installation program. Low carbon technologies This could be more of a factor in the achievement of 2035 target aspirations, than even the potential public reluctance to embrace the technology for cost reasons. Whilst specialists in our sector have teams of qualified heating and ventilation engineers who are hugely experienced in low carbon technologies, it has to be acknowledged that their experience and skill set has taken considerable time and investment to develop; therefore I hope the Government hasn’t underestimated the vital importance of training. This could be more of a factor in the achievement of 2035 target aspirations You can’t simply ask domestic heating engineers, who are used to fitting conventional gas boilers, to switch to installing ground or air source heat pumps overnight. There are significant differences in the science and the technology, together with the requirement by law for engineers to be F-gas registered, proving that they are qualified in the safe handling of fluorinated refrigerant gases (F-gas), which are ozone depleting substances crucial to the heat pump delivery process. Conventional gas boilers Then, there’s the need for engineers to understand how to design low temperature water systems and avoid such things as Legionella bacteria creeping into the system. There is much more to learn for someone used to installing boilers that heat water to a temperature to pasteurize it, because the public health element is a key factor too. So there needs to be significant retraining and, of course, the time to create the infrastructure to deliver the training. The other related issues, such as where training would be delivered and who funds it can be more easily addressed. After all, the Chancellor has protected UK businesses at the drop of a hat in the midst of a pandemic, and the country has, in short time, created a hugely efficient mass-vaccination program; proving that anything is possible. Reducing carbon emissions Steve Baker, has warned of public anger if all implications of the Government’s plans are not explained Currently discussions in Whitehall include such ideas as homeowners being required to install ‘green’ heating before they can sell their property, or levying a surcharge on gas boilers to subsidize production of heat pumps: although no firm decision has yet been taken. It is reported that former Conservative minister, Steve Baker, has warned of public anger if all implications of the Government’s plans are not explained fully to homeowners, which is why I and others will add our voices to the many questions that really need to be answered. That doesn’t mean we in industry are not fully supportive of the Government’s aspirations. The public too appears to be broadly behind this move to reduce carbon emissions, particularly as gas boilers account for a percentage of CO2 produced annually; therefore it is an important area to focus upon if ‘net zero’ carbon emissions by 2050 are to be achieved. Newly trained engineers Roughly 85% of UK homes currently rely on gas for heating, which is around 25 million homes, so the scale of the change required is immense. Even if the UK had the qualified engineers to start from day one, which it doesn’t, the targets are ambitious to say the least. It is my view that investment in training has to be at the heart of the Government’s planning. That could be delivered on the job, in the classroom, or, as has become the norm during lockdown, via online platforms such as Teams, Zoom or Skype. So if the will is there and the resources are in place to fund training, the method is the easier part of the process. What’s less certain is whether the army of re-skilled and newly trained engineers can be deployed quickly enough to achieve the target set. The clock is ticking...

Why The 2030 Deadline For Zero GWP Isn't Achievable
Why The 2030 Deadline For Zero GWP Isn't Achievable

It’s no secret that climate change is one of the most pressing concerns facing our planet. We must act collectively on behalf of future generations to enact the change that will help us to avoid a climate catastrophe; and not least the HVAC industry, which has been, and remains, a major contributor to atmospheric greenhouse gases and global warming. In 2015, the UK Government, along with 196 parties entered the legally binding international treaty on climate change, which was adopted at COP 21 in Paris. For the first time in history, all nations committed to undertake the necessary, ambitious steps to combat climate change. Significant environmental milestone Whilst this was clearly a significant environmental milestone, how realistic is the 2030 deadline for zero Global Warming Potential (GWP), from the HVAC industry’s viewpoint? The refrigeration, air conditioning and heat pump (RACHP) sector is presently the largest of the F-gas emitting sectors. The RACHP sector is in fact the UK’s main user as well as emitter of hydrofluorocarbons (HFCs). HFCs are now the main refrigerants used in a broad range of RACHP applications Since the phasing-out of ozone-depleting refrigerants (CFCs and HCFCs), HFCs are now the main refrigerants used in a broad range of RACHP applications, such as commercial refrigeration and air conditioning. It is therefore unsurprising that the spotlight has fallen on the RACHP sector. However, the EU F-Gas Regulation, which was introduced in 2014, is helping to reshape the sector, and lowering carbon emissions. The regulation stipulates: A 79% cut in the GWP weighted quantity of HFCs that can be sold in the EU by 2030. Several bans which restrict the refrigerants that can be used in specific types of new RACHP equipment. Bans on servicing R-404A systems in medium and large sized supermarket and industrial systems as of 2020. New rules on leak prevention and mandatory leak testing. Industrial refrigeration equipment In response to these new rules, many operating in the RACHP sector have introduced lower-GWP equipment. For instance, in the small-medium building air conditioning market, ultra-low GWP (<10) equipment is now an available option. Whilst the sector is committed to lowering its carbon footprint and has made good progress to date, the target of achieving a zero GWP by 2030 seems slightly unrealistic for a number of reasons. Whilst there is continuous improvement to RACHP equipment, an issue is the long life span of many products. For instance, some industrial refrigeration equipment typically has a life span of 30+ years; which means that approximately half of the industrial refrigeration equipment currently in use could remain so until 2030 and beyond. Reducing environmental impact The replacement of existing equipment is constrained by the equipment’s lifecycle The replacement of existing equipment is constrained by the equipment’s lifecycle, therefore, assuming that there is no premature retirement or retrofitting of the existing equipment, then implementing new alternatives could take decades, potentially. In terms of reducing environmental impact, the industry is reliant on the development of new technology, and manufacturers implementing that technology in the design of new equipment, to provide low-GWP alternatives. We are constrained by the rate at which manufacturers can bring these new products to market. The RACHP sector is also complex and contains an array of sub-sectors. The rate of progress in developing products with lower GWP varies considerably by sub-sector. For example, in the refrigeration sector, in commercial and retail applications where condensing units are used, the progress in lowering GWP is proving to be very slow. Variable refrigerant flow However, when it comes to small-sealed units, on the contrary, an impressive range of new low-GWP products have been brought to market. We can see a similar story in the air conditioning sector, where progress on lowering GWP is rather slow when it comes to large variable refrigerant flow (VRF) and large-ducted units; whereas for water chillers, they are making excellent progress. GWP rating may not be the key consideration in choosing a suitable product In the RACHP sector, there isn’t a one-size-fits-all product. Different equipment is required for different applications. For example, where RACHP systems are located in areas with public occupancy (e.g., retailers), public safety becomes a key concern, and would therefore limit our product choice, as well as the refrigerant type which could be used. Therefore, GWP rating may not be the key consideration in choosing a suitable product, it’s about selecting the right equipment for the application. Providing thermodynamic properties When it comes to RACHP equipment, there is a huge variance in temperature levels. In refrigeration, equipment temperature ranges from 0°C to 5°C for chilled food, and -15°C to -40°C for frozen food. In air-conditioning, the temperature typically ranges between 10°C to 20°Cii. These significant variations in temperature levels require a range of refrigerants to be available, to provide the thermodynamic properties to suit the specific application. It is worth noting here that not all have low GWP ratings. Despite stating that some of the targets are unrealistic, I do however believe that as an industry, we can collectively work together to make a difference to our planet. Maximum gas recovery Here are a few practical ways we can help to lower our carbon emissions: Use low GWP alternative refrigerants in new equipment – This is the key to success in the long term. As I explained previously, the long lifecycle of some of the equipment means that it will potentially be many years before the existing repository of HFCs is completely obsolete. However, it is a realistic goal that by 2050, the current generation of high-GWP HFCs could be replaced with low-GWP alternatives. Recover F-Gases from equipment - Old equipment reaching end-of-life contains HFCs. It is illegal to vent these HFCs into the atmosphere. The F-Gas Regulation has a mandatory requirement for the old HFC to be recovered. This refrigerant should be reprocessed, recycled and reused. Although this does not directly reduce F-Gas emissions in the short term, it does encourage maximum gas recovery. Leakage-Detection systems Reduce the usage of HFCs in existing equipment - Interestingly, a large proportion of total HFC consumption is actually to top-up leaks from existing equipment. If we could make advances in the area of leak-prevention, through further development of leakage-detection systems, this would reduce the volumes of HFC inadvertently entering the atmosphere. I’d also advise businesses to regularly undertake leak testing and to keep records. The world needs the entire HVAC industry to lead and drive the change required to reduce our carbon footprint. We must champion the solutions for the climate change crisis. Equally, businesses have a responsibility to ensure they remain F-Gas compliant and that their air conditioning and refrigeration systems continue to work at peak efficiency.

Latest Goodman Manufacturing Company, L.P. news

HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market
HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market

Manufacturers continue to make improvements in heat-pump technology, including higher efficiencies, contractor-friendly designs, and innovative extras like two-stage compressors that allow them to run at lower speeds and cut down energy use and homeowners’ bills. Below is a sampling of six of the latest products to hit the heat pump market. Nortek Global HVAC introduced the W-Series of air conditioning and heat pump equipment for residential and light commercial applications, completing its redesign of Gibson®, NuTone®, and Frigidaire® branded 1.5- to 5-ton, single-phase air conditioning units and heat pumps. The redesign offers contractors a ‘good-better-best’ strategy (the premium F-Series, the mid-range E-Series, and the economically-priced W-Series) to accommodate varying consumer price ranges. Coil-Protecting wire guard The W-Series heat pump is available in 14- and 16-SEER models. Standard features include Copeland scroll compressors and a liquid line filter-drier for field installation in an accessible position to facilitate easy periodic change-outs. It also has a coil-protecting wire guard that adds cabinet structural integrity and holds a plastic mesh in place to safeguard against hail and accidental contact damage, plus an anti-corrosive polymer drain pan with more drainage holes to eliminate potential standing water. On the unit’s exterior cabinet, above the refrigerant access port, is a weather-proof QR code called ‘Charge Me’ that can be scanned to access Nortek’s charge assist tool. “The new W-series of heat pumps recently introduced by Gibson, Frigidaire, and NuTone features a high-tech way to charge,” said Dave Garvin, product manager, Nortek Global HVAC. Variable Speed Heat Pump Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat “The proprietary website helps account for subcooling, fixed orifices, thermostatic expansion valves, ambient temperature at time of charging, lineset length, and other variables that can trip up contractors when charging any heat pump brand.” The Rheem® Prestige® Series EcoNet®-Enabled Variable Speed Heat Pump features a contractor-friendly design, which means expanded valve space and triple service access, for fast and easy install and repairs. Corner-service access allows optimal access to internal components, while individual louver panels speed coil cleaning and cabinet reassembly. Plus, Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat, which provides control, monitoring, and one-touch alert capability. Proper installation and reduced time “Rheem’s Prestige Heat Pump powered by our EcoNet Smart Thermostat keeps contractors in control,” said Ryan Teschner, product manager for Rheem Mfg. “From real-time alerts and system notifications to a charge mode capability, which allows for proper installation and reduced time on the job, Rheem’s heat pump increases job site efficiencies and reduces labor costs for contractors.” The hybrid electric Voltex® from A. O. Smith has an energy factor (efficiency based on the amount of hot water produced per unit of fuel consumed over a typical day) of 2.3, and is Energy Star® qualified. “Heat pump water heaters use electricity to pull heat from the surrounding air rather than generating their own heat,” said Brandon Stepanek, national field marketing manager at A. O. Smith. Reducing greenhouse gas emissions Carrier’s Hybrid Heat systems automatically switch between electric and gas heating “This means that they can be a logical choice for dedicated green home builders interested in enhancing energy efficiency. Because a heat pump water heater uses energy efficiently, it can save customers up to 10 percent on energy bills, which adds up to thousands of dollars over the life of the water heater,” he continued. “The significant reduction in electricity use also has a direct effect on reducing greenhouse gas emissions.” Carrier’s Performance™ Series heat pumps offer a range of efficiencies that start at 14 SEER and reach 17.5 SEER and up to 9.5 HSPF. Combining a gas furnace, an electric heat pump, and a compatible thermostat, Carrier’s Hybrid Heat systems automatically switch between electric and gas heating to optimize the efficiency of each fuel source, helping defend homeowners against utility cost fluctuations. They have Energy Star designation. Carrier indoor furnace “Our microtube coil technology saves space and provides lasting comfort with its corrosion-resistant construction,” the company stated. “In addition, some models include innovative extras, like a two-speed compressor for added benefits like higher efficiency and even, consistent comfort. When installed with a custom-matched Carrier indoor furnace or fan coil and a Côr® Wi-Fi® thermostat, our two-stage heat pumps can operate on low stage up to 80 percent of the time to keep airflow and temperatures even and consistent while adding humidity control during cooling operation.” Heating operation is rated down to minus 5˚F outdoor temperature Fujitsu General America Inc. recently debuted the RGLX Series, three medium-static pressure ducted indoor units for the single-zone Halcyon mini split line. They have sufficient static pressure to heat or cool a whole house. Heating operation is rated down to minus 5˚F outdoor temperature. The 12,000-, 18,000-, and 24,000-Btuh models are Energy Star qualified. V-Shaped heat exchanger Units are available in seven sizes ranging from 12,000 to 48,000 Btuh, with efficiency ratings up to 21.3 SEER. The evaporators are slim enough to fit most ceiling spaces, making them ideal for hidden installations, while the condensing units can be installed below a window or in a narrow space. The new models can be installed in applications that require static pressure up to 0.80 inches of water column and offer maximum piping lengths of up to 246 feet. A built-in drain pump with 33.5 feet of vertical lift comes standard. “The combination of the V-shaped heat exchanger, air stabilizer, and the energy-efficient DC fan motor results in high efficiency and quiet operation,” Fujitsu wrote in the product specs. Customized indoor comfort The Goodman GSZC18 Heat Pump features the next-generation Copeland Scroll™ two-stage compressor coupled with Goodman’s ComfortBridge® communicating technology to deliver up to 19 SEER and 10 HSPF performance. ComfortBridge ‘off-the-wall’ technology gives contractors more installation options and intelligent controls. It works with any thermostat, including single-stage ones. ComfortBridge constantly gathers data, making automatic adjustments for peak performance ComfortBridge constantly gathers data, making automatic adjustments for peak performance, using the minimum energy needed for consistent, customized indoor comfort. A companion CoolCloud™ app connects technicians wirelessly via Bluetooth to ComfortBridge. Advanced ComfortAlert™ Diagnostics constantly monitor the system, reducing failures and pinpointing trouble spots. “Our 18-SEER heat pumps provide high-efficiency, energy-saving indoor comfort with the ease of installation as compared to less sophisticated products,” said Cory Gottfredson, senior product manager, Outdoor Split Systems for Goodman. Compressor crankcase heater “We have incorporated ComfortBridge technology to optimize installation while allowing homeowners to use any thermostat. This truly enhances both operation and installation, freeing contractors from hassles and leaving money in the hands of homeowners where it belongs.” The scroll compressor inside the GSZC18 is designed with fewer moving parts, and the high-efficiency, two-speed electronically commutated condenser fan motor with advanced fan design provides quiet airflow. Other features include SmartShift® technology with short-cycle protection, a bi-flow liquid-line filter-drier, suction line accumulator, high- and low-pressure switches, coil and ambient temperature sensors, a transformer, compressor crankcase heater, high-capacity muffler, and a color-coded terminal strip for non-communicating set-up.

Making Of Goodman Manufacturing’s Indoor Comfort Units Featured On Built In America TV Show
Making Of Goodman Manufacturing’s Indoor Comfort Units Featured On Built In America TV Show

The Built In America television show is taking viewers deep inside one of the nation’s massive, new industrial facilities to witness how a $417 million investment in United States manufacturing is creating Goodman brand air conditioners and furnaces, along with up to 7,000 jobs. Within the doors of the world’s largest tilt wall building at the Texas Technology Park, the Built In America documentary, led by host John McCalmont, demonstrates the manufacturing magic of morphing hefty 15,000-pound coils of steel, aluminum and copper into Goodman brand heating and air conditioning units. Roving the sprawling 4 million-plus square-foot facility, McCalmont – in tow with Goodman Vice President of Manufacturing Joseph Campbell – follows the entire Goodman production process from stamping, brazing, assembly, painting, testing and more testing. McCalmont even chips in to help assemble several products. revolutionize heating and air conditioning industry The technological prowess showcased at the Texas Technology Park demonstrates how far Harold V. Goodman’s dream has come since he created his namesake company 43 years ago. Back then, Goodman said he wanted to “revolutionize the heating and air conditioning industry,” but even he might have found the scope of manufacturing capabilities at Texas Technology Park beyond his imagination. Built In America television celebrates cutting-edge companies that manufacture and assemble products in the United States. Goodman designs, engineers and assembles all of its indoor comfort products in the United States. According to Built In America, the series focuses on the history, job creation, education, business model, pride in workmanship and positive community impact of top companies and their hometowns. The show airs on The Fox Business Network (FBN) as sponsored segments to over 230 million viewers internationally.

Goodman Manufacturing Company’s Redesigned Service Port Earns Goodman 2018 Dealer Design Award
Goodman Manufacturing Company’s Redesigned Service Port Earns Goodman 2018 Dealer Design Award

A dealer-driven enhancement developed by Goodman Manufacturing Company has earned a 2018 Dealer Design Award for making outdoor condensing unit installation and service more convenient and faster. After hearing feedback from its heating, ventilation and air conditioning (HVAC) dealers, Goodman redesigned the liquid line service valves on outdoor condensers to angle outward – a simple but ingenious improvement on traditional service port design. By angling the service port outward and providing room to maneuver with tools, HVAC contractors have found it easier and faster to connect pressure gauge hoses. That enhancement earned Goodman a 2018 ACHR Dealer Design Award.The national award program was established to honor excellence in HVACR product design. Winners showcase the most innovative products that can be conveniently installed, maintained and serviced. easy to install and easy to service Making Goodman brand condensing units easy to sell, easy to install and easy to service is part of our brand DNA" Additionally, a second dealer-driven design improvement was made to elevate the contactor on all single-phase condensing units, allowing for easier connection of incoming electrical line. Previously, contractors had to make this connection in a space with a snug fit. “Our HVAC dealers spoke, and we took action,” explains Mark Hagan, Director of Product Marketing for Goodman. “Making Goodman brand condensing units easy to sell, easy to install and easy to service is part of our brand DNA, so dealer feedback was instrumental in evolving our design for the contactor and service port.” single-phase condensing units The positive response from dealers for the angled service valves encouraged Goodman to implement the enhancement across all its outdoor condensing units. Elevated contactors are now found on all Goodman brand single-phase condensing units. Goodman designed and tested the modifications at its research and testing facilities at its technology campus in Waller, Texas, just outside Houston. All Goodman brand heating and cooling systems are designed, engineered and assembled in the United States. “We continue to drive towards dealer-focused enhancements that make Goodman products easier to sell, install and service,” Hagan says. “These plans for improvement span all aspects of the product, from system design to label application. Stay tuned to learn about more product improvements moving through the pipeline.”

vfd