Indoor Air Quality (IAQ) - Expert Commentary

HVAC Maintenance Vital As Businesses Reopen Post COVID-19
HVAC Maintenance Vital As Businesses Reopen Post COVID-19

In what can only be described as a very turbulent year, many businesses have had to shut their doors and have all but forgotten about the general upkeep of their sites. With priorities shifted to keeping companies afloat and staff employed, maintenance and servicing has taken a backseat, and many systems will be deteriorating unnoticed. It goes without saying that one of the first tasks that employers will have to tackle when returning to work is a deep clean. As we are still in the throes of a pandemic, a clean and disinfected workplace is the number one priority that needs to be ensured, before any staff can be welcomed back to work. This should be closely followed by maintenance of the site’s equipment. Importance of regular HVAC maintenance Regular HVAC maintenance is extremely important as it keeps systems performing efficiently and effectively Regular HVAC maintenance is extremely important as it keeps systems performing efficiently and effectively. The nature of HVAC maintenance does change depending on the time of year, and with some sites being shut for months and through different seasons, managers will need to review their current equipment to ensure it is compliant and working correctly as soon as possible as signs of normality start returning and facilities begin to reopen. While warehouses and factories may have still been operating in some capacity over the last 12 months, many office buildings have seen little to no employees for more than a year in some cases, therefore, risking deterioration and even damage to their systems going unnoticed and untreated. But with so many pieces of equipment at each site, it is often hard to know where to start and what to prioritize. Following HVAC manufacturer’s recommendations In order for businesses to keep functioning as best as they can and to avoid any more disruption, those in charge of maintenance and servicing need to be educated on how the conditions of a system affects the type of work it needs. Manufacturer’s recommendations should also be taken into account. To help define what these are and how to approach them, mechanical and electrical engineers recommend: The coils and pipes in HVAC equipment that are responsible for heat transfer are checked regularly, because if the equipment gets dirty, it won’t transfer heat and energy as well. Checking controls annually to ensure that the HVAC system is running properly, as control calibration can alter. By scheduling regular check-ups, accurate operation is maintained. Maintaining equipment with fans quarterly to maximize longevity. Three key areas include monitoring the impellers, belts and bearings for any dirt, wear and tear, friction or erosion. Keeping an eye on filters, as when they are clogged, it increases the pressure drop in a system, which makes fans work harder to maintain the same airflow. A quarterly clean is usually sufficient for most filters. This is also true of strainers in systems. Optimizing HVAC and electrical equipment With spring now upon us, businesses need to optimize their HVAC and electrical equipment for maximum efficiency With spring now upon us, businesses need to optimize their HVAC and electrical equipment for maximum efficiency. This includes reviewing the sequence of operations for a morning warm up and cool down. However, it’s important to remember that because of prolonged closures over the last 12 months, autumn and winter checks, and in some cases, even summer checks were not able to be carried out in 2020, so before the spring work begins, backdating the maintenance is a good place to start. Ensuring buildings’ energy efficiency With the help of experts, HVAC maintenance doesn’t have to be time-consuming and overwhelming, but it’s a critical part of maintaining an energy-efficient building that is both comfortable and reliable. With regular servicing and some basic knowledge of what is required, sites can maintain optimum efficiency all year round. Noise complaints can also be an issue, if HVAC maintenance isn’t carried out regularly. Spring is a good time for businesses to perform services on their equipment, prior to the summer months starting and should be used to ensure that condenser coils and air handler filters are both clean. The dirtier the equipment, the noisier and less efficient it becomes, which is bad news for any business. Preparing buildings for staff returning to work When a building is returning to normal occupancy after a lengthy closure, additional checks must be considered before reopening is discussed. When a building is initially mothballed, it must be prepared for long term vacancy, but many businesses will not have had this opportunity before the national lockdown, which basically entails that these checks will not have been carried out. After a building becomes unoccupied, it is not the case that maintenance activity should also stop After a building becomes unoccupied, it is not the case that maintenance activity should also stop. At the very least, the frequency of existing planned maintenance will change, but in some cases, more maintenance tasks are required in order to keep the site ticking over. This includes flushing of water systems, Legionella testing and insurance inspections to keep the property functional and compliant. Countering health and safety issues  As the COVID-19 lockdown restrictions are lifted across the United Kingdom and many businesses are gradually reopening, it will present health and safety problems that have not been faced before and will very likely see a surge in services and maintenance being required. With this in mind, it is vital that maintenance becomes a priority as normal service is resumed to not only ensure efficiency, but also to make sure that no employee or visitor to a site is put in danger. Emerging from a surreal 12 months, there is no doubt that companies will still face challenges, so it is crucial that avoidable maintenance problems do not become one of them, so don’t delay in booking routine checks.  

Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term
Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term

According to the latest statistics, Britain now has the highest daily COVID-19 death rate in the World, following an unfortunate record month of fatalities during January 2021. While UK Government is quick to defend this statistic, the fact remains that our country has been crippled by the SARS-CoV-2 virus, and now, as the population battles through yet another lockdown, it seems that the only 'way out’ is through widespread vaccination. impact of COVID-19 Though imperative, this strategy emphasizes the real challenge that Governments across the globe have faced in trying to control this virus; that reducing the transmission or ‘R rate’ is reliant on the behaviors of people. People who have lived with some form of restrictions for too long, people who are frustrated and tired of the impact COVID-19 has had on their businesses, and people who have simply lost trust in Government U-turns and last-minute decisions. What’s more, despite the best efforts of millions to comply with restrictions, the virus itself is one that is hard to contain, particularly with asymptomatic cases unknowingly passing it to others in key locations like supermarkets or via public transport. Regardless of this challenge, there is a solution that doesn’t rely on changing people’s behaviors, but rather in changing the environment in which people live, work and socialize. That solution is the implementation of Active Air Purification Technology. What Is Active Air Purification Technology? Active air purification technology is effective in every cubic cm of indoor air and surface space simultaneously and continuously Most air purification technologies are passive in that they can only have any effect when the air containing the pollutant comes into close proximity or passes through the unit. Examples of this are filtration, UV-C, and various PCO and ionization technologies. In other words, certain operational conditions must be met in order for them to be effective. Active air purification technology is not limited in this way and is effective in every cubic cm of indoor air and surface space simultaneously and continuously. This means pollutants, like viruses and bacteria, are instantly treated no matter where or when in the indoor space they are emitted or exposed which is significant in the context of COVID transmission. Whether required to mitigate microbials, allergens, or dangerous gases and VOCs, active technology offers a unique solution to destroying microbials instantly, offering a safer, cleaner, and more effective approach to air purification in domestic, commercial, and industrial environments. REME Air Purification Technology REME is an active air purification technology developed and patented 15 years ago by RGF Environmental Group, a COVID critical environmental innovator and manufacturer headquartered in the United States. Using no chemicals or harmful substances, REME comprises a number of known air purification technologies and sciences in one product. Its active capability works by producing and maintaining similar concentrations of hydrogen peroxide molecules as those found in the outdoor air and combines a process of bipolar ionization. When coming into contact with microbials, the naturally occurring ionized molecules break them down, destroy them and then revert them back to harmless water vapor and oxygen. The bipolar ionization effect causes other airborne particulates to agglomerate together causing them to become larger and heavier and drop out of their air or get captured in HVAC filters. RGF’s REME air purification technology produces 1 quadrillion ionized hydrogen peroxide molecules every second, quickly and safely killing any airborne virus or bacteria, including SARS-CoV-2 on a continuous basis. Its effectiveness has been verified by nationally accredited independent labs and testing bodies in the US and by other governments in numerous tests over two decades, with results also confirming a 99%+ inactivation for highly infectious viruses and bacteria, such as H1N1 or ‘Swine Flu’, SARS, Norovirus, MRSA and Bird Flu, just to name a few. Vaccinate Environments And People Air purification technology drives down the R rate for good by effectively vaccinating the air in which the virus circulates In understanding exactly how active air purification technology works and its capability to successfully destroy COVID-19, it’s clear that it presents an opportunity to drive down the R rate for good by effectively vaccinating the air in which the virus circulates. This strategy is already working its way through the United States with leading brands, like restaurant chain TGI Friday, installing active air purification technology across all establishments and has also caught the attention of renowned insurance market, Lloyds of London, which has installed the technology across all UK offices to ensure its 5,000 plus staff members can return safely to work. Improving the environment For nearly 12 months the world has been coping with COVID-19, describing it as an ‘unprecedented period’ where there is no clear end. However, in vaccinating both people and the environment in which it lives, the virus can be controlled once and for all. Ultimately, with a crippled economy, in excess of 100,000 deaths and a generation of children impacted by the closure of schools, now is the time to accelerate response and change the environments in which the virus circulates, not just the people. 

Overcoming Engineering Challenges In Riser Design
Overcoming Engineering Challenges In Riser Design

How grooved solutions have been making contractors and engineers reimagine the way they construct risers in vertical buildings? Enter into the right pub, or head to a city’s museum or town hall, and you can often find a picture of how the surrounding area used to look. An image from twenty years ago and the difference isn’t too vast. Fifty years back and there’s a definite change. A picture from over a hundred years ago and it’s practically unrecognizable. And what’s the common theme running through these images? Cities are getting taller. As more people migrated to urban areas, developers saw the need to go higher. But with this comes its own unique set of challenges. How can the safety of ground floor be transferred to, in the most extreme case, level 163? Grooved mechanical pipe joining solutions When it comes to high-rise buildings, there are a number of potential challenges for a piping engineer To find out how grooved mechanical pipe joining solutions are helping developers & engineers go higher, we spoke to Matthew Strohm, Director of Product Development (Piping System Design) at Victaulic. When it comes to high-rise buildings, there are a number of potential challenges that a piping engineer will need to take into consideration, most of which relate to thermal movement and the resulting forces on the building. Other issues such as seismic activity and building creep (the natural movement of a building due to settlement) also need to be taken into account. Compensating for thermal expansion and contraction Specifically related to piping systems and subsequently, pipe joining solutions, is the unique problem of having to compensate for thermal expansion and contraction, while at the same time, accommodating for higher pressure. Change in pipe diameter is not an uncommon concern for engineers, however, providing a solution which could operate at a pressure gauge of 25 bars, or the fluctuating temperature of water, presents its own challenges. It’s with these issues in mind that engineers choose their joining solutions, which is why these are the very criteria we set our Victaulic pipe joining solutions against. Grooved vs. Traditional Pipe Joining For decades, the traditional solutions for joining pipes have been welding, threading or flanging. These are good solutions to choose from, but there is a distinct lack of flexibility in a solution that fuses or flanges system components together. This is where flexible grooved couplings come in. They are solutions that allow controlled linear and angular movement at each joint to accommodate not only for thermal expansion and contraction, but also building sway and creep. So how do flexible grooved couplings manage this? It’s essentially down to the design of their components. The dimensions of the pipe coupling housing key is narrower than the pipe groove, allowing room for movement. Furthermore, the width of the pipe coupling housing allows for pipe end separation, which in turn allows the grooved pipe joint to accommodate movement. Benefits of Grooved couplings There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small. As many project managers and engineers know, saving on space can be the key to unlocking extra value above initial planning. Additionally, grooved couplings are perfectly placed to accommodate for piping movement, whereas welded joints that in their very nature are designed to be fixed in place, need to have an area of space to allow for a welded expansion loop or alternatively, enough space to allow the star-pattern tightening of a flanged flex connector. Saving time, money and labor Besides the savings on space, grooved connections offer contractors savings in three key areas: time, money and labor. The installation-ready design of Victaulic’s grooved couplings allow for an easier installation, meaning a process which might take 30 minutes through a welded solution for instance, can now take just five minutes. As any contractor will testify to, this is valuable time that can be used for other parts of the project. With a reduction in time comes savings in cost and labor. Naturally, less labor is used for the same job and in the case of grooved couplings, less skilled labor is required (in comparison to the high skill level needed for welded joints). It’s these aspects that will ultimately deliver contractors with valuable project savings. Grooved connections offer savings in three key areas: time, money and labor Mechanical riser solutions There are 3 ways to accommodate for thermal movement within risers using a grooved mechanical system: The first method is called top of riser free-floating method and involves installing rigid couplings on the riser and two flexible couplings on the horizontal adjacent piping at the top of the riser, which can reduce the need for riser clamps or other structural during installation and allows the system to move freely within the design tolerances. The second method involves working with grooved expansion loops that help to save up as much as 2/3rd of the size of welded U-shaped expansion loops and avoids forced welded pipe deflection. While welded expansion loops require eight welded joints to assemble, the forces exerted on the joint are far greater than those applied on a grooved expansion loop, and generate greater stress, which ultimately requires larger anchors and guides in order to direct the movement. The third method is working with grooved expansion joints instead of traditional in-line expansion joints, which typically have wear parts and manufacturer-recommended maintenance cycles of five years, which also poses problems due to riser accessibility once the construction is complete. Grooved expansion joints like the Victaulic Style 155 are maintenance-free for the life of the system. Importance of anchors In a system using only flexible joints, risers are installed with anchors at the top and bottom and the piping guided every other length to prevent angular deflection at the joints within the piping run. Anchors distribute the movement forces across the structure and also provide the important task of directing pipe movement. At the pipe anchor location, there will be no differential movement between the piping and the building structure, which forces the pipe to thermally expand or contract from that location. This allows the design engineer to control how and where the movement in a system occurs and to provide the best solution to accommodate that movement. A10 Grooved Riser Anchors upgraded A good manufacturer will always listen to customer demand, especially in an evolving market A good manufacturer will always listen to customer demand, especially in an evolving market. Off the back of strong feedback from contractors, Victaulic recently upgraded its A10 Grooved Riser Anchors to a standard product. With the primary functions of carrying the weights and forces that act downward to the base of the riser and connecting the riser to the rest of the structure, the anchor has been providing sturdy support for some of the tallest buildings around the world. Future trends for high-rise buildings One trend already taking place, and I expect to continue, is contractors bringing riser experts into the project at an earlier stage. It just seems to make logistical sense to operate in this fashion. it’s a more efficient use of time to collaborate early in the process. I believe contractors and engineers will seek assistance from companies such as us to help design blueprints together, working in tandem to produce the right solution. Vertical buildings are on the rise. For generations, people have been moving to urban areas, putting greater demand on housing residents and employees. Through the use of grooved coupling solutions as an alternative to traditional methods, contractors can benefit from greater flexibility, reliability, ease of installation and ultimately and most importantly, speed of the installation process.

Latest Goodman Manufacturing Company, L.P. news

HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market
HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market

Manufacturers continue to make improvements in heat-pump technology, including higher efficiencies, contractor-friendly designs, and innovative extras like two-stage compressors that allow them to run at lower speeds and cut down energy use and homeowners’ bills. Below is a sampling of six of the latest products to hit the heat pump market. Nortek Global HVAC introduced the W-Series of air conditioning and heat pump equipment for residential and light commercial applications, completing its redesign of Gibson®, NuTone®, and Frigidaire® branded 1.5- to 5-ton, single-phase air conditioning units and heat pumps. The redesign offers contractors a ‘good-better-best’ strategy (the premium F-Series, the mid-range E-Series, and the economically-priced W-Series) to accommodate varying consumer price ranges. Coil-Protecting wire guard The W-Series heat pump is available in 14- and 16-SEER models. Standard features include Copeland scroll compressors and a liquid line filter-drier for field installation in an accessible position to facilitate easy periodic change-outs. It also has a coil-protecting wire guard that adds cabinet structural integrity and holds a plastic mesh in place to safeguard against hail and accidental contact damage, plus an anti-corrosive polymer drain pan with more drainage holes to eliminate potential standing water. On the unit’s exterior cabinet, above the refrigerant access port, is a weather-proof QR code called ‘Charge Me’ that can be scanned to access Nortek’s charge assist tool. “The new W-series of heat pumps recently introduced by Gibson, Frigidaire, and NuTone features a high-tech way to charge,” said Dave Garvin, product manager, Nortek Global HVAC. Variable Speed Heat Pump Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat “The proprietary website helps account for subcooling, fixed orifices, thermostatic expansion valves, ambient temperature at time of charging, lineset length, and other variables that can trip up contractors when charging any heat pump brand.” The Rheem® Prestige® Series EcoNet®-Enabled Variable Speed Heat Pump features a contractor-friendly design, which means expanded valve space and triple service access, for fast and easy install and repairs. Corner-service access allows optimal access to internal components, while individual louver panels speed coil cleaning and cabinet reassembly. Plus, Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat, which provides control, monitoring, and one-touch alert capability. Proper installation and reduced time “Rheem’s Prestige Heat Pump powered by our EcoNet Smart Thermostat keeps contractors in control,” said Ryan Teschner, product manager for Rheem Mfg. “From real-time alerts and system notifications to a charge mode capability, which allows for proper installation and reduced time on the job, Rheem’s heat pump increases job site efficiencies and reduces labor costs for contractors.” The hybrid electric Voltex® from A. O. Smith has an energy factor (efficiency based on the amount of hot water produced per unit of fuel consumed over a typical day) of 2.3, and is Energy Star® qualified. “Heat pump water heaters use electricity to pull heat from the surrounding air rather than generating their own heat,” said Brandon Stepanek, national field marketing manager at A. O. Smith. Reducing greenhouse gas emissions Carrier’s Hybrid Heat systems automatically switch between electric and gas heating “This means that they can be a logical choice for dedicated green home builders interested in enhancing energy efficiency. Because a heat pump water heater uses energy efficiently, it can save customers up to 10 percent on energy bills, which adds up to thousands of dollars over the life of the water heater,” he continued. “The significant reduction in electricity use also has a direct effect on reducing greenhouse gas emissions.” Carrier’s Performance™ Series heat pumps offer a range of efficiencies that start at 14 SEER and reach 17.5 SEER and up to 9.5 HSPF. Combining a gas furnace, an electric heat pump, and a compatible thermostat, Carrier’s Hybrid Heat systems automatically switch between electric and gas heating to optimize the efficiency of each fuel source, helping defend homeowners against utility cost fluctuations. They have Energy Star designation. Carrier indoor furnace “Our microtube coil technology saves space and provides lasting comfort with its corrosion-resistant construction,” the company stated. “In addition, some models include innovative extras, like a two-speed compressor for added benefits like higher efficiency and even, consistent comfort. When installed with a custom-matched Carrier indoor furnace or fan coil and a Côr® Wi-Fi® thermostat, our two-stage heat pumps can operate on low stage up to 80 percent of the time to keep airflow and temperatures even and consistent while adding humidity control during cooling operation.” Heating operation is rated down to minus 5˚F outdoor temperature Fujitsu General America Inc. recently debuted the RGLX Series, three medium-static pressure ducted indoor units for the single-zone Halcyon mini split line. They have sufficient static pressure to heat or cool a whole house. Heating operation is rated down to minus 5˚F outdoor temperature. The 12,000-, 18,000-, and 24,000-Btuh models are Energy Star qualified. V-Shaped heat exchanger Units are available in seven sizes ranging from 12,000 to 48,000 Btuh, with efficiency ratings up to 21.3 SEER. The evaporators are slim enough to fit most ceiling spaces, making them ideal for hidden installations, while the condensing units can be installed below a window or in a narrow space. The new models can be installed in applications that require static pressure up to 0.80 inches of water column and offer maximum piping lengths of up to 246 feet. A built-in drain pump with 33.5 feet of vertical lift comes standard. “The combination of the V-shaped heat exchanger, air stabilizer, and the energy-efficient DC fan motor results in high efficiency and quiet operation,” Fujitsu wrote in the product specs. Customized indoor comfort The Goodman GSZC18 Heat Pump features the next-generation Copeland Scroll™ two-stage compressor coupled with Goodman’s ComfortBridge® communicating technology to deliver up to 19 SEER and 10 HSPF performance. ComfortBridge ‘off-the-wall’ technology gives contractors more installation options and intelligent controls. It works with any thermostat, including single-stage ones. ComfortBridge constantly gathers data, making automatic adjustments for peak performance ComfortBridge constantly gathers data, making automatic adjustments for peak performance, using the minimum energy needed for consistent, customized indoor comfort. A companion CoolCloud™ app connects technicians wirelessly via Bluetooth to ComfortBridge. Advanced ComfortAlert™ Diagnostics constantly monitor the system, reducing failures and pinpointing trouble spots. “Our 18-SEER heat pumps provide high-efficiency, energy-saving indoor comfort with the ease of installation as compared to less sophisticated products,” said Cory Gottfredson, senior product manager, Outdoor Split Systems for Goodman. Compressor crankcase heater “We have incorporated ComfortBridge technology to optimize installation while allowing homeowners to use any thermostat. This truly enhances both operation and installation, freeing contractors from hassles and leaving money in the hands of homeowners where it belongs.” The scroll compressor inside the GSZC18 is designed with fewer moving parts, and the high-efficiency, two-speed electronically commutated condenser fan motor with advanced fan design provides quiet airflow. Other features include SmartShift® technology with short-cycle protection, a bi-flow liquid-line filter-drier, suction line accumulator, high- and low-pressure switches, coil and ambient temperature sensors, a transformer, compressor crankcase heater, high-capacity muffler, and a color-coded terminal strip for non-communicating set-up.

Making Of Goodman Manufacturing’s Indoor Comfort Units Featured On Built In America TV Show
Making Of Goodman Manufacturing’s Indoor Comfort Units Featured On Built In America TV Show

The Built In America television show is taking viewers deep inside one of the nation’s massive, new industrial facilities to witness how a $417 million investment in United States manufacturing is creating Goodman brand air conditioners and furnaces, along with up to 7,000 jobs. Within the doors of the world’s largest tilt wall building at the Texas Technology Park, the Built In America documentary, led by host John McCalmont, demonstrates the manufacturing magic of morphing hefty 15,000-pound coils of steel, aluminum and copper into Goodman brand heating and air conditioning units. Roving the sprawling 4 million-plus square-foot facility, McCalmont – in tow with Goodman Vice President of Manufacturing Joseph Campbell – follows the entire Goodman production process from stamping, brazing, assembly, painting, testing and more testing. McCalmont even chips in to help assemble several products. revolutionize heating and air conditioning industry The technological prowess showcased at the Texas Technology Park demonstrates how far Harold V. Goodman’s dream has come since he created his namesake company 43 years ago. Back then, Goodman said he wanted to “revolutionize the heating and air conditioning industry,” but even he might have found the scope of manufacturing capabilities at Texas Technology Park beyond his imagination. Built In America television celebrates cutting-edge companies that manufacture and assemble products in the United States. Goodman designs, engineers and assembles all of its indoor comfort products in the United States. According to Built In America, the series focuses on the history, job creation, education, business model, pride in workmanship and positive community impact of top companies and their hometowns. The show airs on The Fox Business Network (FBN) as sponsored segments to over 230 million viewers internationally.

Goodman Manufacturing Company’s Redesigned Service Port Earns Goodman 2018 Dealer Design Award
Goodman Manufacturing Company’s Redesigned Service Port Earns Goodman 2018 Dealer Design Award

A dealer-driven enhancement developed by Goodman Manufacturing Company has earned a 2018 Dealer Design Award for making outdoor condensing unit installation and service more convenient and faster. After hearing feedback from its heating, ventilation and air conditioning (HVAC) dealers, Goodman redesigned the liquid line service valves on outdoor condensers to angle outward – a simple but ingenious improvement on traditional service port design. By angling the service port outward and providing room to maneuver with tools, HVAC contractors have found it easier and faster to connect pressure gauge hoses. That enhancement earned Goodman a 2018 ACHR Dealer Design Award.The national award program was established to honor excellence in HVACR product design. Winners showcase the most innovative products that can be conveniently installed, maintained and serviced. easy to install and easy to service Making Goodman brand condensing units easy to sell, easy to install and easy to service is part of our brand DNA" Additionally, a second dealer-driven design improvement was made to elevate the contactor on all single-phase condensing units, allowing for easier connection of incoming electrical line. Previously, contractors had to make this connection in a space with a snug fit. “Our HVAC dealers spoke, and we took action,” explains Mark Hagan, Director of Product Marketing for Goodman. “Making Goodman brand condensing units easy to sell, easy to install and easy to service is part of our brand DNA, so dealer feedback was instrumental in evolving our design for the contactor and service port.” single-phase condensing units The positive response from dealers for the angled service valves encouraged Goodman to implement the enhancement across all its outdoor condensing units. Elevated contactors are now found on all Goodman brand single-phase condensing units. Goodman designed and tested the modifications at its research and testing facilities at its technology campus in Waller, Texas, just outside Houston. All Goodman brand heating and cooling systems are designed, engineered and assembled in the United States. “We continue to drive towards dealer-focused enhancements that make Goodman products easier to sell, install and service,” Hagan says. “These plans for improvement span all aspects of the product, from system design to label application. Stay tuned to learn about more product improvements moving through the pipeline.”

vfd