When the weather’s mild and summer seems months away, it’s actually an ideal time to get the cooling system serviced. One can never know when a heatwave is about to strike, but they will certainly feel it if the air con is struggling and productivity slows right down. Adcock Refrigeration and Air Conditioning can provide a full range of maintenance services for both Adcock installed HVAC equipment and any systems that the company did not originally install.

If the reader of this article is responsible for buildings and the occupants/equipment within, then the company assures them that a planned maintenance contract will keep them cool, calm, and collected. Their specialist maintenance team is on hand 24 hours a day, all year round, and they can provide them with access to one of the largest best-trained teams of engineers in the UK with quick response times.

meet all legal obligations

'Saving' money by dismissing a maintenance contract is only going to be costly in the long-run. A small problem can easily escalate into an emergency if it isn’t picked up early enough, and in a heatwave, the company has seen calls to their service team quadruple. With a preventative maintenance contract, however, one would have a much lower risk of a mechanical failure plus privileged access to their swift-response 24-hour call-out service, should they need it.

The company are Refcom registered and all their UK-wide engineers have undertaken the mandatory training

There’s more to maintenance than saving money. Has the reader considered legal obligations? Entering into a preventative maintenance contract with the company ensures that they, as end-user, meet all their legal obligations under EC Regulation No 842/2006 regarding fluorinated greenhouse gases (F-Gases). The company are Refcom registered and all their UK-wide engineers have undertaken the mandatory F-Gas and ODS Regulations training.

prioritized for breakdowns

F-Gas legislation means it’s a legal requirement to have a qualified engineer check equipment for leaks and have clearly identified labeled equipment and records. If one is not sure that they are doing this properly, they can get in touch with the company so that they can advise. Like a car, mechanical parts require regular checks to run optimally and efficiently.

With preventative maintenance, an engineer will look at and test all components, lubricants, filters, belts, and electrical parts for signs of deterioration and wear. Ordering replacement parts in good time means no downtime. Neglecting maintenance and discovering that a new part is critically required is a risky business and can be costly. As a maintenance customer, they are prioritized for breakdowns (even if the company didn’t install the equipment).

cost effective solutions

On top of that, their team of engineers will get to know the customer’s system inside out and will be able to offer them discounts and cost effective solutions for long-term maintenance plans, upgrades, or system extensions. Rest assured that maintenance is scheduled, breakdowns are mitigated and the system’s records are impeccable and accessible. Don’t rely on warranties alone, as many warranties are only valid if regular maintenance has been carried out.

The company’s courteous engineers are reliable, tidy, and trained to deliver the highest standards of customer care. They know this because the company receives great feedback and repeat business. One will always be able to identify their engineers in smart Adcock uniforms – the company does not outsource maintenance - and they will take the time to explain any system queries without using technical jargon.

sick building syndrome

They work on many confidential, high-security jobs so the customer can rely on them for discretion too

They work on many confidential, high-security jobs so the customer can rely on them for discretion too. Optimal running systems along with clean ducts and filters will ensure that circulated air is clean, which in turn will improve the environment and health of building occupants. Clean, fresh indoor air has a commercial value in terms of reduction of lethargy and germs and increased productivity and well-being.

Poorly maintained systems can be the cause of many health complaints including asthma, allergies, colds, and ‘sick building syndrome’ which can cost companies thousands of pounds each year. One can never be too cautious when managing machinery, chemicals, and electricity especially in close proximity to people. A sub-optimum system will always run the risk of developing a fault that can be as serious as a fire or gas leak.

preventative maintenance service

Don’t forget the temperature standards required by the nature of the premises either - food or medical supplies can become health hazards if not properly cooled, for example. A regular maintenance plan will ensure that people and buildings remain safe and that they remain within the law and any service agreements they have. One can enquire or book now as the callout frequency is already increasing.

In the company’s professional opinion, first-class maintenance is a must-have, not a nice-to-have. With temperatures already rising, so are callouts. Hence, one can avoid the queue and book the next service or preventative maintenance now.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Pandemic Spotlights Need To Balance Costs While Improving Air Quality In Schools
Pandemic Spotlights Need To Balance Costs While Improving Air Quality In Schools

Attitudes about indoor air quality need to change, especially given the current pandemic that forces people to spend most of their time indoors. But addressing the pandemic through increased ventilation and better indoor air quality can be expensive. For example, the Los Angeles Unified School District, the second-largest in the nation, has spent $6 million on HVAC upgrades and new air filters in response to the pandemic and expects to pay about $1.7 million a month for ongoing inspections and filter replacements. Updating & Improving HVAC Systems Updating HVAC systems to minimize virus spread has been an expensive proposition all around. Some school districts in California report the costs are insurmountable. Sometimes seeking to replace or update an HVAC system opens a can of worms: Electrical systems must be rewired, asbestos must be removed, and/or an expensive roof needs to be replaced. Schools in low-income areas are especially likely to be in poor condition, and unable to afford improvements. Some school districts have used money from the federal CARES Act – a $2 trillion federal economic package passed in March – to make ventilation improvements. Hope remains that additional state and/or federal money will be available, but funding is still likely to be inadequate. Airborne Transmission Study showed that some classrooms had air change rates below 0.5 changes per hour The airborne transmission was initially underplayed as a means of spreading the novel coronavirus. There was more emphasis on the dangers of touch during the early days of the pandemic. However, the airborne (aerosol) spread is now believed to make up about 75% of transmissions. A group of 239 scientists from around the world advocated more action to address aerosol spread in a July 2020 open letter to the World Health Organization (WHO). The concern is a global challenge. For example, a survey of 20 classrooms in the United Kingdom, carried out by National Air Quality Testing Services (NAQTS), revealed very low air change rates that could increase the risk of virus transmission. The study showed that some classrooms had air change rates below 0.5 changes per hour (3 to 5 changes per hour would be desirable). Even small increases in flow rate could reduce the risk of infection significantly. Raising airflows from zero to 100 cu m/hour cuts the risk by up to a third, according to NAQTS. Fresh Air Ventilation & Filtration The Scientific Advisory Group for Emergencies (SAGE) advised the UK Government last fall of a need to ensure undisrupted education for children of all ages. A critical part of keeping children in school is clear guidance and support packages, including better ventilation and air filtration, particularly through winter. The German government advises schools to open their windows for at least five minutes every hour Other countries can learn a lot about the value of opening windows to allow in more fresh air from the Germans. For years, Germans have habitually opened their windows twice a day, even in winter. In fact, “lüften,” or airing a room, is among the cheapest and most effective ways of decreasing the spread of the coronavirus. The German government advises schools to open their windows for at least five minutes every hour; for example, when classes are changing. Improving Indoor Air Quality Airing of rooms is a likely factor in the lower number of coronavirus cases reported in Germany compared to, say, the United Kingdom. In the end, improving indoor air quality involves some combination of letting in more fresh air, upgrading air filtration systems, and installing technologies such as UV light to kill pathogens. However, implementing these measures only mitigates the likelihood of contracting COVID-19. Some risk remains.

What Technologies And Trends Will Define HVAC In 2021?
What Technologies And Trends Will Define HVAC In 2021?

The pandemic of 2020 presented unique challenges to the HVAC market, and in many instances, responding to those challenges relied on technical innovation. It’s safe to say that the pandemic accelerated several technology trends, redirected others, and overall raised the stakes in the industry’s ongoing challenge to meet customer needs across a wide spectrum. But what comes now? We asked our Expert Panel Roundtable to weigh in on this question: What technologies and trends will define the HVAC industry in 2021?

Overcoming Engineering Challenges In Riser Design
Overcoming Engineering Challenges In Riser Design

How grooved solutions have been making contractors and engineers reimagine the way they construct risers in vertical buildings? Enter into the right pub, or head to a city’s museum or town hall, and you can often find a picture of how the surrounding area used to look. An image from twenty years ago and the difference isn’t too vast. Fifty years back and there’s a definite change. A picture from over a hundred years ago and it’s practically unrecognizable. And what’s the common theme running through these images? Cities are getting taller. As more people migrated to urban areas, developers saw the need to go higher. But with this comes its own unique set of challenges. How can the safety of ground floor be transferred to, in the most extreme case, level 163? Grooved mechanical pipe joining solutions When it comes to high-rise buildings, there are a number of potential challenges for a piping engineer To find out how grooved mechanical pipe joining solutions are helping developers & engineers go higher, we spoke to Matthew Strohm, Director of Product Development (Piping System Design) at Victaulic. When it comes to high-rise buildings, there are a number of potential challenges that a piping engineer will need to take into consideration, most of which relate to thermal movement and the resulting forces on the building. Other issues such as seismic activity and building creep (the natural movement of a building due to settlement) also need to be taken into account. Compensating for thermal expansion and contraction Specifically related to piping systems and subsequently, pipe joining solutions, is the unique problem of having to compensate for thermal expansion and contraction, while at the same time, accommodating for higher pressure. Change in pipe diameter is not an uncommon concern for engineers, however, providing a solution which could operate at a pressure gauge of 25 bars, or the fluctuating temperature of water, presents its own challenges. It’s with these issues in mind that engineers choose their joining solutions, which is why these are the very criteria we set our Victaulic pipe joining solutions against. Grooved vs. Traditional Pipe Joining For decades, the traditional solutions for joining pipes have been welding, threading or flanging. These are good solutions to choose from, but there is a distinct lack of flexibility in a solution that fuses or flanges system components together. This is where flexible grooved couplings come in. They are solutions that allow controlled linear and angular movement at each joint to accommodate not only for thermal expansion and contraction, but also building sway and creep. So how do flexible grooved couplings manage this? It’s essentially down to the design of their components. The dimensions of the pipe coupling housing key is narrower than the pipe groove, allowing room for movement. Furthermore, the width of the pipe coupling housing allows for pipe end separation, which in turn allows the grooved pipe joint to accommodate movement. Benefits of Grooved couplings There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small. As many project managers and engineers know, saving on space can be the key to unlocking extra value above initial planning. Additionally, grooved couplings are perfectly placed to accommodate for piping movement, whereas welded joints that in their very nature are designed to be fixed in place, need to have an area of space to allow for a welded expansion loop or alternatively, enough space to allow the star-pattern tightening of a flanged flex connector. Saving time, money and labor Besides the savings on space, grooved connections offer contractors savings in three key areas: time, money and labor. The installation-ready design of Victaulic’s grooved couplings allow for an easier installation, meaning a process which might take 30 minutes through a welded solution for instance, can now take just five minutes. As any contractor will testify to, this is valuable time that can be used for other parts of the project. With a reduction in time comes savings in cost and labor. Naturally, less labor is used for the same job and in the case of grooved couplings, less skilled labor is required (in comparison to the high skill level needed for welded joints). It’s these aspects that will ultimately deliver contractors with valuable project savings. Grooved connections offer savings in three key areas: time, money and labor Mechanical riser solutions There are 3 ways to accommodate for thermal movement within risers using a grooved mechanical system: The first method is called top of riser free-floating method and involves installing rigid couplings on the riser and two flexible couplings on the horizontal adjacent piping at the top of the riser, which can reduce the need for riser clamps or other structural during installation and allows the system to move freely within the design tolerances. The second method involves working with grooved expansion loops that help to save up as much as 2/3rd of the size of welded U-shaped expansion loops and avoids forced welded pipe deflection. While welded expansion loops require eight welded joints to assemble, the forces exerted on the joint are far greater than those applied on a grooved expansion loop, and generate greater stress, which ultimately requires larger anchors and guides in order to direct the movement. The third method is working with grooved expansion joints instead of traditional in-line expansion joints, which typically have wear parts and manufacturer-recommended maintenance cycles of five years, which also poses problems due to riser accessibility once the construction is complete. Grooved expansion joints like the Victaulic Style 155 are maintenance-free for the life of the system. Importance of anchors In a system using only flexible joints, risers are installed with anchors at the top and bottom and the piping guided every other length to prevent angular deflection at the joints within the piping run. Anchors distribute the movement forces across the structure and also provide the important task of directing pipe movement. At the pipe anchor location, there will be no differential movement between the piping and the building structure, which forces the pipe to thermally expand or contract from that location. This allows the design engineer to control how and where the movement in a system occurs and to provide the best solution to accommodate that movement. A10 Grooved Riser Anchors upgraded A good manufacturer will always listen to customer demand, especially in an evolving market A good manufacturer will always listen to customer demand, especially in an evolving market. Off the back of strong feedback from contractors, Victaulic recently upgraded its A10 Grooved Riser Anchors to a standard product. With the primary functions of carrying the weights and forces that act downward to the base of the riser and connecting the riser to the rest of the structure, the anchor has been providing sturdy support for some of the tallest buildings around the world. Future trends for high-rise buildings One trend already taking place, and I expect to continue, is contractors bringing riser experts into the project at an earlier stage. It just seems to make logistical sense to operate in this fashion. it’s a more efficient use of time to collaborate early in the process. I believe contractors and engineers will seek assistance from companies such as us to help design blueprints together, working in tandem to produce the right solution. Vertical buildings are on the rise. For generations, people have been moving to urban areas, putting greater demand on housing residents and employees. Through the use of grooved coupling solutions as an alternative to traditional methods, contractors can benefit from greater flexibility, reliability, ease of installation and ultimately and most importantly, speed of the installation process.

vfd