Browse Variable Refrigerant Flow/Volume (VRF/VRV)

Variable Refrigerant Flow/Volume (VRF/VRV) - Expert Commentary

HVAC Maintenance Vital As Businesses Reopen Post COVID-19
HVAC Maintenance Vital As Businesses Reopen Post COVID-19

In what can only be described as a very turbulent year, many businesses have had to shut their doors and have all but forgotten about the general upkeep of their sites. With priorities shifted to keeping companies afloat and staff employed, maintenance and servicing has taken a backseat, and many systems will be deteriorating unnoticed. It goes without saying that one of the first tasks that employers will have to tackle when returning to work is a deep clean. As we are still in the throes of a pandemic, a clean and disinfected workplace is the number one priority that needs to be ensured, before any staff can be welcomed back to work. This should be closely followed by maintenance of the site’s equipment. Importance of regular HVAC maintenance Regular HVAC maintenance is extremely important as it keeps systems performing efficiently and effectively Regular HVAC maintenance is extremely important as it keeps systems performing efficiently and effectively. The nature of HVAC maintenance does change depending on the time of year, and with some sites being shut for months and through different seasons, managers will need to review their current equipment to ensure it is compliant and working correctly as soon as possible as signs of normality start returning and facilities begin to reopen. While warehouses and factories may have still been operating in some capacity over the last 12 months, many office buildings have seen little to no employees for more than a year in some cases, therefore, risking deterioration and even damage to their systems going unnoticed and untreated. But with so many pieces of equipment at each site, it is often hard to know where to start and what to prioritize. Following HVAC manufacturer’s recommendations In order for businesses to keep functioning as best as they can and to avoid any more disruption, those in charge of maintenance and servicing need to be educated on how the conditions of a system affects the type of work it needs. Manufacturer’s recommendations should also be taken into account. To help define what these are and how to approach them, mechanical and electrical engineers recommend: The coils and pipes in HVAC equipment that are responsible for heat transfer are checked regularly, because if the equipment gets dirty, it won’t transfer heat and energy as well. Checking controls annually to ensure that the HVAC system is running properly, as control calibration can alter. By scheduling regular check-ups, accurate operation is maintained. Maintaining equipment with fans quarterly to maximize longevity. Three key areas include monitoring the impellers, belts and bearings for any dirt, wear and tear, friction or erosion. Keeping an eye on filters, as when they are clogged, it increases the pressure drop in a system, which makes fans work harder to maintain the same airflow. A quarterly clean is usually sufficient for most filters. This is also true of strainers in systems. Optimizing HVAC and electrical equipment With spring now upon us, businesses need to optimize their HVAC and electrical equipment for maximum efficiency With spring now upon us, businesses need to optimize their HVAC and electrical equipment for maximum efficiency. This includes reviewing the sequence of operations for a morning warm up and cool down. However, it’s important to remember that because of prolonged closures over the last 12 months, autumn and winter checks, and in some cases, even summer checks were not able to be carried out in 2020, so before the spring work begins, backdating the maintenance is a good place to start. Ensuring buildings’ energy efficiency With the help of experts, HVAC maintenance doesn’t have to be time-consuming and overwhelming, but it’s a critical part of maintaining an energy-efficient building that is both comfortable and reliable. With regular servicing and some basic knowledge of what is required, sites can maintain optimum efficiency all year round. Noise complaints can also be an issue, if HVAC maintenance isn’t carried out regularly. Spring is a good time for businesses to perform services on their equipment, prior to the summer months starting and should be used to ensure that condenser coils and air handler filters are both clean. The dirtier the equipment, the noisier and less efficient it becomes, which is bad news for any business. Preparing buildings for staff returning to work When a building is returning to normal occupancy after a lengthy closure, additional checks must be considered before reopening is discussed. When a building is initially mothballed, it must be prepared for long term vacancy, but many businesses will not have had this opportunity before the national lockdown, which basically entails that these checks will not have been carried out. After a building becomes unoccupied, it is not the case that maintenance activity should also stop After a building becomes unoccupied, it is not the case that maintenance activity should also stop. At the very least, the frequency of existing planned maintenance will change, but in some cases, more maintenance tasks are required in order to keep the site ticking over. This includes flushing of water systems, Legionella testing and insurance inspections to keep the property functional and compliant. Countering health and safety issues  As the COVID-19 lockdown restrictions are lifted across the United Kingdom and many businesses are gradually reopening, it will present health and safety problems that have not been faced before and will very likely see a surge in services and maintenance being required. With this in mind, it is vital that maintenance becomes a priority as normal service is resumed to not only ensure efficiency, but also to make sure that no employee or visitor to a site is put in danger. Emerging from a surreal 12 months, there is no doubt that companies will still face challenges, so it is crucial that avoidable maintenance problems do not become one of them, so don’t delay in booking routine checks.  

Gas Boiler Ban 2025: The Challenges Ahead To Reaching This Milestone
Gas Boiler Ban 2025: The Challenges Ahead To Reaching This Milestone

As part of the UK Government’s stated commitment to net-zero carbon emissions by 2050, gas boilers, along with other fossil-fuel burning boilers, are to be banned in newbuild homes from 2025 under the Future Homes Standard. Although the ban has received a widespread welcome in principle, there has been criticism. Environmental groups have criticized the ban for not going far enough in tacking the escalating climate crisis, and the construction and home-building industries have criticized it for the challenges it brings in achieving a viable home-heating alternative in such a short space of time. Placing significant demand Despite the criticism, the ban doesn’t go far enough; applying to newbuild homes only, with, as yet, no plans to phase out gas heating in existing homes. New heating technology has to be ready to roll out before 2025, whether it’s to 160,000 homes per year (the annual approximate figure of new homes built) or the UK’s entire housing stock of 29 million. Despite the criticism, the ban doesn’t go far enough; applying to newbuild homes only The Home Builders Federation, in reaction to the Future Homes Standard, has said, “It’s going to be a challenge and a huge area of work.” And it is widely acknowledged there is significant demand placed on the building and HVAC industries to produce a long-term, viable solution. Challenges include the creation of new, cost-effective designs of energy infrastructures, and implementation in time for the short deadline of less than four years away. Gas boiler heating systems From energy design engineers to developers, suppliers, and energy companies, everyone in the supply chain is affected in delivering a solution that UK homeowners can afford and that developers can supply. The communications challenge also cannot be underestimated, to bring along the public to the reality that homes cannot, ultimately, continue to be heated by the gas boilers they are so familiar with.   The most likely low-carbon alternative to gas boiler heating systems is generally acknowledged to be heat pumps and heat networks, powered by renewables. It has been estimated by the Committee on Climate Change that by 2030 there will be 2.5 million heat pumps in new homes. Heat pumps offer comparable heating power to gas boilers and are powered by low-carbon electricity. Heat pumps have great potential for saving carbon; approximately 25-85 tCO2 per home over an average lifetime, reducing carbon emissions by 90%. Existing gas system But hydrogen is expensive to produce and although the existing gas system could be readily used for supply But for heat pumps to provide the level of warmth, particular in winter, and summer, weather in the UK, their effectiveness relies on excellent insulation, including triple glazing and adaptations to walls, floors, and ceilings. And while there has been a drive to get our draughty homes better insulated in the UK in recent years, with various grants and funding, this will be particularly crucial for newbuilds going forward. Hydrogen boilers could be an alternative to gas boilers. Hydrogen produces no emissions when burnt, only water and heat. But hydrogen is expensive to produce and although the existing gas system could be readily used for supply, and by consumers already familiar with a boiler system, it is not yet seen as a full solution to the replacement of gas. Technically qualified workers Trials are due to be carried out in the north-east with hydrogen-ready boilers. But the impending deadline and challenge for production and systems to be ready and tested, for mass implementation is unrealistic. Even before the Future Homes Standard was announced, there was an acknowledged shortage of skills. Engineering UK, in a recent survey, found that an additional 1.8 million engineers and technically qualified workers would be needed by 2025 in order to meet demand. But the impending deadline and challenge for production and systems to be ready and tested Nearly a third of HVAC firms have declared a skills shortage, with many feeling there is a crisis in the sector of sufficient qualified workers who can satisfy the new regulations. Now the demand is set to rise with the ban, as well as Brexit. A large proportion of qualified HVAC workers are sourced from the EU, further compounding the crisis of the skills shortage already faced.    Zero-Carbon technologies From imagining life without a gas boiler to a young person seeing their future career in engineering and renewable energy, effective communications and campaigns could go a long way. Targeted lifestyle campaigns, with positive, compelling case studies of homes of the future being powered by green, zero-carbon technologies could help to drive the momentum for innovation from a domestic base. Talent strategies could also combat the reality of an ageing and diminishing workforce in HVAC and other sectors. It’s vital now, more than ever, that young people see a career in renewable and eco-living technology as, not only rewarding but futuristic, global, and sophisticated. Any alternative to gas heating has to be affordable for UK households, and therefore for housing developers to adopt. Fuel poverty is a real risk. Energy-Saving measures The right help needs to be in place to support the development and take-up of the alternative According to the Committee on Climate Change, it costs £4,800 to install low-carbon heating in a new home, but £26,300 in an existing house while there are various funding initiatives for households adopting energy-saving measures, the right help needs to be in place to support the development and take-up of the alternative. Not just for newbuild homeowners, but beyond 2025 when existing households are called upon to switch. The Home Builders Federation have said of the Future Homes Standard, “Ambitious deadlines pose enormous challenges for all parties involved including developers, suppliers, energy companies in terms of skills, design, energy infrastructure and the supply chain.” Low-Carbon heating technology But there is also a stated dedication to achieving what can be realistically achieved, proving that there is a genuine commitment to ensuring our brighter, cleaner future and planet with low-carbon heating technology. The ultimate challenge now will be in Government, agencies, and industry working together, in a dedicated way, to be realistic about, and tackle the challenges across the board so the right solution for our home-heating future can be achieved, in time, and ready for a rollout for the new homes we build from 2025.

Overcoming Engineering Challenges In Riser Design
Overcoming Engineering Challenges In Riser Design

How grooved solutions have been making contractors and engineers reimagine the way they construct risers in vertical buildings? Enter into the right pub, or head to a city’s museum or town hall, and you can often find a picture of how the surrounding area used to look. An image from twenty years ago and the difference isn’t too vast. Fifty years back and there’s a definite change. A picture from over a hundred years ago and it’s practically unrecognizable. And what’s the common theme running through these images? Cities are getting taller. As more people migrated to urban areas, developers saw the need to go higher. But with this comes its own unique set of challenges. How can the safety of ground floor be transferred to, in the most extreme case, level 163? Grooved mechanical pipe joining solutions When it comes to high-rise buildings, there are a number of potential challenges for a piping engineer To find out how grooved mechanical pipe joining solutions are helping developers & engineers go higher, we spoke to Matthew Strohm, Director of Product Development (Piping System Design) at Victaulic. When it comes to high-rise buildings, there are a number of potential challenges that a piping engineer will need to take into consideration, most of which relate to thermal movement and the resulting forces on the building. Other issues such as seismic activity and building creep (the natural movement of a building due to settlement) also need to be taken into account. Compensating for thermal expansion and contraction Specifically related to piping systems and subsequently, pipe joining solutions, is the unique problem of having to compensate for thermal expansion and contraction, while at the same time, accommodating for higher pressure. Change in pipe diameter is not an uncommon concern for engineers, however, providing a solution which could operate at a pressure gauge of 25 bars, or the fluctuating temperature of water, presents its own challenges. It’s with these issues in mind that engineers choose their joining solutions, which is why these are the very criteria we set our Victaulic pipe joining solutions against. Grooved vs. Traditional Pipe Joining For decades, the traditional solutions for joining pipes have been welding, threading or flanging. These are good solutions to choose from, but there is a distinct lack of flexibility in a solution that fuses or flanges system components together. This is where flexible grooved couplings come in. They are solutions that allow controlled linear and angular movement at each joint to accommodate not only for thermal expansion and contraction, but also building sway and creep. So how do flexible grooved couplings manage this? It’s essentially down to the design of their components. The dimensions of the pipe coupling housing key is narrower than the pipe groove, allowing room for movement. Furthermore, the width of the pipe coupling housing allows for pipe end separation, which in turn allows the grooved pipe joint to accommodate movement. Benefits of Grooved couplings There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small. As many project managers and engineers know, saving on space can be the key to unlocking extra value above initial planning. Additionally, grooved couplings are perfectly placed to accommodate for piping movement, whereas welded joints that in their very nature are designed to be fixed in place, need to have an area of space to allow for a welded expansion loop or alternatively, enough space to allow the star-pattern tightening of a flanged flex connector. Saving time, money and labor Besides the savings on space, grooved connections offer contractors savings in three key areas: time, money and labor. The installation-ready design of Victaulic’s grooved couplings allow for an easier installation, meaning a process which might take 30 minutes through a welded solution for instance, can now take just five minutes. As any contractor will testify to, this is valuable time that can be used for other parts of the project. With a reduction in time comes savings in cost and labor. Naturally, less labor is used for the same job and in the case of grooved couplings, less skilled labor is required (in comparison to the high skill level needed for welded joints). It’s these aspects that will ultimately deliver contractors with valuable project savings. Grooved connections offer savings in three key areas: time, money and labor Mechanical riser solutions There are 3 ways to accommodate for thermal movement within risers using a grooved mechanical system: The first method is called top of riser free-floating method and involves installing rigid couplings on the riser and two flexible couplings on the horizontal adjacent piping at the top of the riser, which can reduce the need for riser clamps or other structural during installation and allows the system to move freely within the design tolerances. The second method involves working with grooved expansion loops that help to save up as much as 2/3rd of the size of welded U-shaped expansion loops and avoids forced welded pipe deflection. While welded expansion loops require eight welded joints to assemble, the forces exerted on the joint are far greater than those applied on a grooved expansion loop, and generate greater stress, which ultimately requires larger anchors and guides in order to direct the movement. The third method is working with grooved expansion joints instead of traditional in-line expansion joints, which typically have wear parts and manufacturer-recommended maintenance cycles of five years, which also poses problems due to riser accessibility once the construction is complete. Grooved expansion joints like the Victaulic Style 155 are maintenance-free for the life of the system. Importance of anchors In a system using only flexible joints, risers are installed with anchors at the top and bottom and the piping guided every other length to prevent angular deflection at the joints within the piping run. Anchors distribute the movement forces across the structure and also provide the important task of directing pipe movement. At the pipe anchor location, there will be no differential movement between the piping and the building structure, which forces the pipe to thermally expand or contract from that location. This allows the design engineer to control how and where the movement in a system occurs and to provide the best solution to accommodate that movement. A10 Grooved Riser Anchors upgraded A good manufacturer will always listen to customer demand, especially in an evolving market A good manufacturer will always listen to customer demand, especially in an evolving market. Off the back of strong feedback from contractors, Victaulic recently upgraded its A10 Grooved Riser Anchors to a standard product. With the primary functions of carrying the weights and forces that act downward to the base of the riser and connecting the riser to the rest of the structure, the anchor has been providing sturdy support for some of the tallest buildings around the world. Future trends for high-rise buildings One trend already taking place, and I expect to continue, is contractors bringing riser experts into the project at an earlier stage. It just seems to make logistical sense to operate in this fashion. it’s a more efficient use of time to collaborate early in the process. I believe contractors and engineers will seek assistance from companies such as us to help design blueprints together, working in tandem to produce the right solution. Vertical buildings are on the rise. For generations, people have been moving to urban areas, putting greater demand on housing residents and employees. Through the use of grooved coupling solutions as an alternative to traditional methods, contractors can benefit from greater flexibility, reliability, ease of installation and ultimately and most importantly, speed of the installation process.

Latest Nortek Global HVAC news

HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market
HVAC Industry Manufacturers To Introduce Six Latest Products For The Heat Pump Market

Manufacturers continue to make improvements in heat-pump technology, including higher efficiencies, contractor-friendly designs, and innovative extras like two-stage compressors that allow them to run at lower speeds and cut down energy use and homeowners’ bills. Below is a sampling of six of the latest products to hit the heat pump market. Nortek Global HVAC introduced the W-Series of air conditioning and heat pump equipment for residential and light commercial applications, completing its redesign of Gibson®, NuTone®, and Frigidaire® branded 1.5- to 5-ton, single-phase air conditioning units and heat pumps. The redesign offers contractors a ‘good-better-best’ strategy (the premium F-Series, the mid-range E-Series, and the economically-priced W-Series) to accommodate varying consumer price ranges. Coil-Protecting wire guard The W-Series heat pump is available in 14- and 16-SEER models. Standard features include Copeland scroll compressors and a liquid line filter-drier for field installation in an accessible position to facilitate easy periodic change-outs. It also has a coil-protecting wire guard that adds cabinet structural integrity and holds a plastic mesh in place to safeguard against hail and accidental contact damage, plus an anti-corrosive polymer drain pan with more drainage holes to eliminate potential standing water. On the unit’s exterior cabinet, above the refrigerant access port, is a weather-proof QR code called ‘Charge Me’ that can be scanned to access Nortek’s charge assist tool. “The new W-series of heat pumps recently introduced by Gibson, Frigidaire, and NuTone features a high-tech way to charge,” said Dave Garvin, product manager, Nortek Global HVAC. Variable Speed Heat Pump Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat “The proprietary website helps account for subcooling, fixed orifices, thermostatic expansion valves, ambient temperature at time of charging, lineset length, and other variables that can trip up contractors when charging any heat pump brand.” The Rheem® Prestige® Series EcoNet®-Enabled Variable Speed Heat Pump features a contractor-friendly design, which means expanded valve space and triple service access, for fast and easy install and repairs. Corner-service access allows optimal access to internal components, while individual louver panels speed coil cleaning and cabinet reassembly. Plus, Rheem’s next generation Prestige® heat pump harnesses the power of the new EcoNet Smart Thermostat, which provides control, monitoring, and one-touch alert capability. Proper installation and reduced time “Rheem’s Prestige Heat Pump powered by our EcoNet Smart Thermostat keeps contractors in control,” said Ryan Teschner, product manager for Rheem Mfg. “From real-time alerts and system notifications to a charge mode capability, which allows for proper installation and reduced time on the job, Rheem’s heat pump increases job site efficiencies and reduces labor costs for contractors.” The hybrid electric Voltex® from A. O. Smith has an energy factor (efficiency based on the amount of hot water produced per unit of fuel consumed over a typical day) of 2.3, and is Energy Star® qualified. “Heat pump water heaters use electricity to pull heat from the surrounding air rather than generating their own heat,” said Brandon Stepanek, national field marketing manager at A. O. Smith. Reducing greenhouse gas emissions Carrier’s Hybrid Heat systems automatically switch between electric and gas heating “This means that they can be a logical choice for dedicated green home builders interested in enhancing energy efficiency. Because a heat pump water heater uses energy efficiently, it can save customers up to 10 percent on energy bills, which adds up to thousands of dollars over the life of the water heater,” he continued. “The significant reduction in electricity use also has a direct effect on reducing greenhouse gas emissions.” Carrier’s Performance™ Series heat pumps offer a range of efficiencies that start at 14 SEER and reach 17.5 SEER and up to 9.5 HSPF. Combining a gas furnace, an electric heat pump, and a compatible thermostat, Carrier’s Hybrid Heat systems automatically switch between electric and gas heating to optimize the efficiency of each fuel source, helping defend homeowners against utility cost fluctuations. They have Energy Star designation. Carrier indoor furnace “Our microtube coil technology saves space and provides lasting comfort with its corrosion-resistant construction,” the company stated. “In addition, some models include innovative extras, like a two-speed compressor for added benefits like higher efficiency and even, consistent comfort. When installed with a custom-matched Carrier indoor furnace or fan coil and a Côr® Wi-Fi® thermostat, our two-stage heat pumps can operate on low stage up to 80 percent of the time to keep airflow and temperatures even and consistent while adding humidity control during cooling operation.” Heating operation is rated down to minus 5˚F outdoor temperature Fujitsu General America Inc. recently debuted the RGLX Series, three medium-static pressure ducted indoor units for the single-zone Halcyon mini split line. They have sufficient static pressure to heat or cool a whole house. Heating operation is rated down to minus 5˚F outdoor temperature. The 12,000-, 18,000-, and 24,000-Btuh models are Energy Star qualified. V-Shaped heat exchanger Units are available in seven sizes ranging from 12,000 to 48,000 Btuh, with efficiency ratings up to 21.3 SEER. The evaporators are slim enough to fit most ceiling spaces, making them ideal for hidden installations, while the condensing units can be installed below a window or in a narrow space. The new models can be installed in applications that require static pressure up to 0.80 inches of water column and offer maximum piping lengths of up to 246 feet. A built-in drain pump with 33.5 feet of vertical lift comes standard. “The combination of the V-shaped heat exchanger, air stabilizer, and the energy-efficient DC fan motor results in high efficiency and quiet operation,” Fujitsu wrote in the product specs. Customized indoor comfort The Goodman GSZC18 Heat Pump features the next-generation Copeland Scroll™ two-stage compressor coupled with Goodman’s ComfortBridge® communicating technology to deliver up to 19 SEER and 10 HSPF performance. ComfortBridge ‘off-the-wall’ technology gives contractors more installation options and intelligent controls. It works with any thermostat, including single-stage ones. ComfortBridge constantly gathers data, making automatic adjustments for peak performance ComfortBridge constantly gathers data, making automatic adjustments for peak performance, using the minimum energy needed for consistent, customized indoor comfort. A companion CoolCloud™ app connects technicians wirelessly via Bluetooth to ComfortBridge. Advanced ComfortAlert™ Diagnostics constantly monitor the system, reducing failures and pinpointing trouble spots. “Our 18-SEER heat pumps provide high-efficiency, energy-saving indoor comfort with the ease of installation as compared to less sophisticated products,” said Cory Gottfredson, senior product manager, Outdoor Split Systems for Goodman. Compressor crankcase heater “We have incorporated ComfortBridge technology to optimize installation while allowing homeowners to use any thermostat. This truly enhances both operation and installation, freeing contractors from hassles and leaving money in the hands of homeowners where it belongs.” The scroll compressor inside the GSZC18 is designed with fewer moving parts, and the high-efficiency, two-speed electronically commutated condenser fan motor with advanced fan design provides quiet airflow. Other features include SmartShift® technology with short-cycle protection, a bi-flow liquid-line filter-drier, suction line accumulator, high- and low-pressure switches, coil and ambient temperature sensors, a transformer, compressor crankcase heater, high-capacity muffler, and a color-coded terminal strip for non-communicating set-up.

Nortek Adds CDU1200 Coolant Distribution Unit To Its ServerCool Data Center Liquid Cooling Product Line
Nortek Adds CDU1200 Coolant Distribution Unit To Its ServerCool Data Center Liquid Cooling Product Line

Nortek™ Air Solutions introduces the CDU1200, a 1,200-kW coolant distribution unit (CDU) that’s the single most powerful, compact CDU on the planet, and the newest addition to its ServerCool™ data center liquid cooling product line. The CDU1200’s small 58 (d) x 35 (w)-inch (1,475 x 900-mm) footprint supplies an industry-first 1.2-MW of cooling capacity in a density of 14.6-ft2 (1.3-m2) that helps attain optimum power usage effectiveness (PUE). The CDU1200 is a perfect new construction or retrofit liquid cooling solution for high performance computing (HPC) and enterprise data centers, as well co-location, corporate network edge, government, research and other data center formats. Superior Pumping Power In an age where liquid cooling is required to support growing chip power densities, the CDU1200’s kW/ft2 capacity is unrivaled when directly compared to competitor products. The CDU1200’s compatibility with existing ServerCool CDU’s, such as the CD6 300-kW floor mount and the CD5 50-kW rack-mount, enables modular growth of existing systems. The CDU1200’s superior pumping power also allows it to be placed outside of the white space. The CDU1200 offers two redundant 15-hp stainless steel pumps with many energy-efficient features The CDU1200’s highly-efficient heat exchanger technology thermally transfers primary loop cooling to the secondary loop’s liquid cooling circuit for distribution to IT rack cold plates. The CDU1200 offers two redundant 15-hp stainless steel pumps with many energy-efficient features including electronically-commutated (EC) motors and variable frequency inverters that efficiently modulate optimum performance flow rates for the system’s 320-gpm (1,211-L/m) capacity. Liquid Cooling Control Experience System water purity is optimized with a standard 50-micron washable ultra filter/strainer and an optional ultraviolet (UV) light biological contaminant sterilization system. The CDU1200 has an onboard programmable logic controller (PLC)-based microprocessor using custom-written, proprietary software based on ServerCool’s decades of liquid cooling control experience. The unit’s control infrastructure features compatibility and plug-and-play connections with Modbus The system’s full instrumentation of triple-redundant pressure transducers and temperature sensors offer unprecedented pinpoint control and monitoring of vital statistics, such as primary and secondary loop discharge/return temperatures, data hall temperature and humidity, pump PSI and many other critical parameters. Operation parameters are accessed from the CDU1200’s user-friendly, seven-inch (17-cm) color LED touchscreen HMI or a remote monitor. The unit’s control infrastructure features compatibility and plug-and-play connections with Modbus, BACnet™ and other building automation system (BAS) protocols. Computer-Automated Testing System The CDU1200 has a narrow Delta-T temperature which helps facilitate eligibility for the Green500 supercomputers list. It’s rated nominally with a 90°F (32°C) primary and a 7.2°F (4°C) approach Delta-T and exceeds 2.5-MW capacity with an approach of 14.4°F (8°C). Nortek’s commitment to the CDU1200’s quality control and short lead times is illustrated by a newly-built state-of-the-art, dedicated production line established at Nortek Global HVAC’s world-class 350,000-square-foot (32,516-m2) Dyersburg, Tennessee., manufacturing facility. The Demand Flow Technology-certified plant uses quality control and reliability processes, such as multiple checkpoints each with the unit’s CAD drawings on a computer monitor. A 100-percent computer-automated testing system prevents human error. Dripless Smart Connector Accessories The CDU1200 design also includes: Requires less life space than a CRAC when converting a data center to higher cooling and higher density liquid cooling; Robotically welded, corrosion-resistant ASIS 316 stainless steel is used instead of some competitors’ plastic piping that potentially melts or leaks easily under higher pressures. Piping infrastructure is subjected to a stringent series of factory pressure and hydraulic quality control testing; Maintenance is minimal and requires only periodic filter/strainer checks; Modulating actuator valve can control dew point and prevent condensation; Compatible with all brands of chillers, evaporative coolers, cooling towers and other chilled water central plant formats; User-definable LED alarms for leak detection/prevention and performance criteria; Fixed flow meters on primary and secondary circuits; Two-year standard warranty–one of the industry’s longest; Optional manifolds and dripless smart connector accessories fit all cold plate piping configurations. ServerCool products are ISO-9001:2015-certified and backed by Nortek’s proven 20 years of mission critical experience, design and customer support.

Nortek Announces Gibson®, Nu Tone® And Frigidaire® Air Conditioning Units And Heat Pumps
Nortek Announces Gibson®, Nu Tone® And Frigidaire® Air Conditioning Units And Heat Pumps

The introduction of this product series completes the final phase of an overall redesign of Gibson®, NuTone® and Frigidaire® branded 1.5- to 5-ton, single-phase air conditioning units and heat pumps. The air conditioner is available in 13-, 14-, and 16-SEER models, and the heat pump is available in 14- and 16-SEER models. Standard features include Copeland scroll compressors and a liquid line filter-drier for field installation in an accessible position to facilitate easy periodic change-outs. Coil-protecting wire guard Featured aesthetic and functional additions include a coil-protecting wire guard that adds cabinet structural integrity and holds a plastic mesh in place to safeguard against hail and accidental contact damage. The wire guard is secured by the top and three corner screws to promote quiet operation and easy disassembly for coil cleaning access. The series features a barcode on the interior control panel to scan and access all the particular unit’s Nortek website documents.

vfd