Variable Refrigerant Flow Systems (VRF or VRV) - Expert Commentary

HVAC Maintenance Vital As Businesses Reopen Post COVID-19
HVAC Maintenance Vital As Businesses Reopen Post COVID-19

In what can only be described as a very turbulent year, many businesses have had to shut their doors and have all but forgotten about the general upkeep of their sites. With priorities shifted to keeping companies afloat and staff employed, maintenance and servicing has taken a backseat, and many systems will be deteriorating unnoticed. It goes without saying that one of the first tasks that employers will have to tackle when returning to work is a deep clean. As we are still in the throes of a pandemic, a clean and disinfected workplace is the number one priority that needs to be ensured, before any staff can be welcomed back to work. This should be closely followed by maintenance of the site’s equipment. Importance of regular HVAC maintenance Regular HVAC maintenance is extremely important as it keeps systems performing efficiently and effectively Regular HVAC maintenance is extremely important as it keeps systems performing efficiently and effectively. The nature of HVAC maintenance does change depending on the time of year, and with some sites being shut for months and through different seasons, managers will need to review their current equipment to ensure it is compliant and working correctly as soon as possible as signs of normality start returning and facilities begin to reopen. While warehouses and factories may have still been operating in some capacity over the last 12 months, many office buildings have seen little to no employees for more than a year in some cases, therefore, risking deterioration and even damage to their systems going unnoticed and untreated. But with so many pieces of equipment at each site, it is often hard to know where to start and what to prioritize. Following HVAC manufacturer’s recommendations In order for businesses to keep functioning as best as they can and to avoid any more disruption, those in charge of maintenance and servicing need to be educated on how the conditions of a system affects the type of work it needs. Manufacturer’s recommendations should also be taken into account. To help define what these are and how to approach them, mechanical and electrical engineers recommend: The coils and pipes in HVAC equipment that are responsible for heat transfer are checked regularly, because if the equipment gets dirty, it won’t transfer heat and energy as well. Checking controls annually to ensure that the HVAC system is running properly, as control calibration can alter. By scheduling regular check-ups, accurate operation is maintained. Maintaining equipment with fans quarterly to maximize longevity. Three key areas include monitoring the impellers, belts and bearings for any dirt, wear and tear, friction or erosion. Keeping an eye on filters, as when they are clogged, it increases the pressure drop in a system, which makes fans work harder to maintain the same airflow. A quarterly clean is usually sufficient for most filters. This is also true of strainers in systems. Optimizing HVAC and electrical equipment With spring now upon us, businesses need to optimize their HVAC and electrical equipment for maximum efficiency With spring now upon us, businesses need to optimize their HVAC and electrical equipment for maximum efficiency. This includes reviewing the sequence of operations for a morning warm up and cool down. However, it’s important to remember that because of prolonged closures over the last 12 months, autumn and winter checks, and in some cases, even summer checks were not able to be carried out in 2020, so before the spring work begins, backdating the maintenance is a good place to start. Ensuring buildings’ energy efficiency With the help of experts, HVAC maintenance doesn’t have to be time-consuming and overwhelming, but it’s a critical part of maintaining an energy-efficient building that is both comfortable and reliable. With regular servicing and some basic knowledge of what is required, sites can maintain optimum efficiency all year round. Noise complaints can also be an issue, if HVAC maintenance isn’t carried out regularly. Spring is a good time for businesses to perform services on their equipment, prior to the summer months starting and should be used to ensure that condenser coils and air handler filters are both clean. The dirtier the equipment, the noisier and less efficient it becomes, which is bad news for any business. Preparing buildings for staff returning to work When a building is returning to normal occupancy after a lengthy closure, additional checks must be considered before reopening is discussed. When a building is initially mothballed, it must be prepared for long term vacancy, but many businesses will not have had this opportunity before the national lockdown, which basically entails that these checks will not have been carried out. After a building becomes unoccupied, it is not the case that maintenance activity should also stop After a building becomes unoccupied, it is not the case that maintenance activity should also stop. At the very least, the frequency of existing planned maintenance will change, but in some cases, more maintenance tasks are required in order to keep the site ticking over. This includes flushing of water systems, Legionella testing and insurance inspections to keep the property functional and compliant. Countering health and safety issues  As the COVID-19 lockdown restrictions are lifted across the United Kingdom and many businesses are gradually reopening, it will present health and safety problems that have not been faced before and will very likely see a surge in services and maintenance being required. With this in mind, it is vital that maintenance becomes a priority as normal service is resumed to not only ensure efficiency, but also to make sure that no employee or visitor to a site is put in danger. Emerging from a surreal 12 months, there is no doubt that companies will still face challenges, so it is crucial that avoidable maintenance problems do not become one of them, so don’t delay in booking routine checks.  

Overcoming Engineering Challenges In Riser Design
Overcoming Engineering Challenges In Riser Design

How grooved solutions have been making contractors and engineers reimagine the way they construct risers in vertical buildings? Enter into the right pub, or head to a city’s museum or town hall, and you can often find a picture of how the surrounding area used to look. An image from twenty years ago and the difference isn’t too vast. Fifty years back and there’s a definite change. A picture from over a hundred years ago and it’s practically unrecognizable. And what’s the common theme running through these images? Cities are getting taller. As more people migrated to urban areas, developers saw the need to go higher. But with this comes its own unique set of challenges. How can the safety of ground floor be transferred to, in the most extreme case, level 163? Grooved mechanical pipe joining solutions When it comes to high-rise buildings, there are a number of potential challenges for a piping engineer To find out how grooved mechanical pipe joining solutions are helping developers & engineers go higher, we spoke to Matthew Strohm, Director of Product Development (Piping System Design) at Victaulic. When it comes to high-rise buildings, there are a number of potential challenges that a piping engineer will need to take into consideration, most of which relate to thermal movement and the resulting forces on the building. Other issues such as seismic activity and building creep (the natural movement of a building due to settlement) also need to be taken into account. Compensating for thermal expansion and contraction Specifically related to piping systems and subsequently, pipe joining solutions, is the unique problem of having to compensate for thermal expansion and contraction, while at the same time, accommodating for higher pressure. Change in pipe diameter is not an uncommon concern for engineers, however, providing a solution which could operate at a pressure gauge of 25 bars, or the fluctuating temperature of water, presents its own challenges. It’s with these issues in mind that engineers choose their joining solutions, which is why these are the very criteria we set our Victaulic pipe joining solutions against. Grooved vs. Traditional Pipe Joining For decades, the traditional solutions for joining pipes have been welding, threading or flanging. These are good solutions to choose from, but there is a distinct lack of flexibility in a solution that fuses or flanges system components together. This is where flexible grooved couplings come in. They are solutions that allow controlled linear and angular movement at each joint to accommodate not only for thermal expansion and contraction, but also building sway and creep. So how do flexible grooved couplings manage this? It’s essentially down to the design of their components. The dimensions of the pipe coupling housing key is narrower than the pipe groove, allowing room for movement. Furthermore, the width of the pipe coupling housing allows for pipe end separation, which in turn allows the grooved pipe joint to accommodate movement. Benefits of Grooved couplings There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small There are many benefits of grooved couplings, with space-saving being a key advantage on projects, both large and small. As many project managers and engineers know, saving on space can be the key to unlocking extra value above initial planning. Additionally, grooved couplings are perfectly placed to accommodate for piping movement, whereas welded joints that in their very nature are designed to be fixed in place, need to have an area of space to allow for a welded expansion loop or alternatively, enough space to allow the star-pattern tightening of a flanged flex connector. Saving time, money and labor Besides the savings on space, grooved connections offer contractors savings in three key areas: time, money and labor. The installation-ready design of Victaulic’s grooved couplings allow for an easier installation, meaning a process which might take 30 minutes through a welded solution for instance, can now take just five minutes. As any contractor will testify to, this is valuable time that can be used for other parts of the project. With a reduction in time comes savings in cost and labor. Naturally, less labor is used for the same job and in the case of grooved couplings, less skilled labor is required (in comparison to the high skill level needed for welded joints). It’s these aspects that will ultimately deliver contractors with valuable project savings. Grooved connections offer savings in three key areas: time, money and labor Mechanical riser solutions There are 3 ways to accommodate for thermal movement within risers using a grooved mechanical system: The first method is called top of riser free-floating method and involves installing rigid couplings on the riser and two flexible couplings on the horizontal adjacent piping at the top of the riser, which can reduce the need for riser clamps or other structural during installation and allows the system to move freely within the design tolerances. The second method involves working with grooved expansion loops that help to save up as much as 2/3rd of the size of welded U-shaped expansion loops and avoids forced welded pipe deflection. While welded expansion loops require eight welded joints to assemble, the forces exerted on the joint are far greater than those applied on a grooved expansion loop, and generate greater stress, which ultimately requires larger anchors and guides in order to direct the movement. The third method is working with grooved expansion joints instead of traditional in-line expansion joints, which typically have wear parts and manufacturer-recommended maintenance cycles of five years, which also poses problems due to riser accessibility once the construction is complete. Grooved expansion joints like the Victaulic Style 155 are maintenance-free for the life of the system. Importance of anchors In a system using only flexible joints, risers are installed with anchors at the top and bottom and the piping guided every other length to prevent angular deflection at the joints within the piping run. Anchors distribute the movement forces across the structure and also provide the important task of directing pipe movement. At the pipe anchor location, there will be no differential movement between the piping and the building structure, which forces the pipe to thermally expand or contract from that location. This allows the design engineer to control how and where the movement in a system occurs and to provide the best solution to accommodate that movement. A10 Grooved Riser Anchors upgraded A good manufacturer will always listen to customer demand, especially in an evolving market A good manufacturer will always listen to customer demand, especially in an evolving market. Off the back of strong feedback from contractors, Victaulic recently upgraded its A10 Grooved Riser Anchors to a standard product. With the primary functions of carrying the weights and forces that act downward to the base of the riser and connecting the riser to the rest of the structure, the anchor has been providing sturdy support for some of the tallest buildings around the world. Future trends for high-rise buildings One trend already taking place, and I expect to continue, is contractors bringing riser experts into the project at an earlier stage. It just seems to make logistical sense to operate in this fashion. it’s a more efficient use of time to collaborate early in the process. I believe contractors and engineers will seek assistance from companies such as us to help design blueprints together, working in tandem to produce the right solution. Vertical buildings are on the rise. For generations, people have been moving to urban areas, putting greater demand on housing residents and employees. Through the use of grooved coupling solutions as an alternative to traditional methods, contractors can benefit from greater flexibility, reliability, ease of installation and ultimately and most importantly, speed of the installation process.

Using Silicone To Improve HVAC Insulation & Energy Efficiency
Using Silicone To Improve HVAC Insulation & Energy Efficiency

The modern technological world is filled with ‘extrusions’. They are all around us, in the form of small and not-so-small cross sections. The function of an extrusion is to form seals between components of complex machinery and keep them functional. And, depending on the ‘type’ used, they can make a big difference to how a machine operates. Some of the most desirable types of extrusion — and especially for use in HVAC systems — are those made from silicone. Silicone, which is a type of rubber, has a robust set of properties. For one, silicone can withstand extreme temperatures, both high and low. Semi-Exterior environments Ranging from -60°C to temperatures exceeding 200°C. (And there are even higher grades that can be manufactured to withstand temperatures well above 200°C.) Ideal for HVAC units that work round the clock to keep large numbers of people in large buildings comfortable in summer and winter conditions. In addition to this, silicone is also one of the more resistant properties to the constant vibrations of working machinery. It can be difficult to locate the source of the problem if a tiny extrusion has dislodged. Vibration-resistant properties make silicone extrusions less likely to disengage or fall out of place, therefore minimizing the need for costly repairs. Finally, silicone is also more durable than most other materials when it comes to exterior or semi-exterior environments, such as that of rain or ultraviolet light. Protecting electrical components Silicone is useful in HVAC systems because it offers enhanced sealing and compression protections As a result of this favorability, there is already a considerable number of different types of silicone extrusions that can be found in a lot of HVAC systems. These include HVAC sealing gaskets, hatch seals and vibration isolation pads. But also silicone sponges, which act as a protective layer of thermal insulation. As well as providing thermal insulation, silicone sponges can double-up as a form of acoustic insulation, with considerable noise reduction and anti-squeal properties. Silicone enclosure gaskets protect electrical components, and environmental seals — as the name suggests — help to keep everything protected from the sometimes harsh elements of the environment outside. Silicone is useful in HVAC systems because it offers enhanced sealing and compression protections over most other materials. Closed cell structure On a material level, silicone has a ‘closed cell structure’, which helps to keep out moisture ingress, along with water and dust. The combination of a closed cell structure, along with sealing and compression benefits, makes silicone ideal for exterior seals and gaskets in and around HVAC systems. The softer grades of Silicone have an excellent memory and low stress relaxation, which in turn helps to prevent common faults with HVAC systems — usually caused by gasket failures made from other materials that soften and compress inaccurately. The low stress relaxation properties require minimal force on behalf of the engineers sealing the enclosures, while the memory-properties of the silicone allow it to conform to awkward shapes and gaps of various widths. Manufacturing HVAC systems proactively with silicone in mind can allow more design flexibility on behalf of the engineers. Inevitable rapid movements General purpose solid silicone or silicone sponge is suitable for many HVAC applications And, as mentioned above, vibration isolation pads work as dampers to protect against the inevitable rapid movements of the systems as they power along. But also to help withstand the vibrations of HVAC units on transport systems, such as buses and trains, which naturally vibrate as they run over imperfections on rail and road tracks. As it happens, general purpose solid silicone or silicone sponge is suitable for many HVAC applications, not just those discussed above. The designs of the extrusions would be different, reflective of their function, but the material would be the same. In some instances, customers may also require a flame retardant silicone — certified to UL94 specifications — in order to meet safety standards in certain situations or environments. Great temperature ranges For all its material advantages, silicone is generally more expensive than the other types of material rubber that are used to manufacture extrusions, such as ethylene propylene diene monomer (EPDM). And while other materials do of course have stand-out benefits of their own — EPDM for example is more hard-wearing than silicone — silicone is still often the extrusion ‘type’ of choice because of its ability to withstand great temperature ranges. This is very important for heating and air conditioning systems. Because some of the most common factors that cause HVAC systems to break down are as a result of seal and gasket failure, which can come about as a result of an overheating unit. Very cold environment Chances of a unit overheating can be just as likely — in fact perhaps more so — where the system has to operate in a very cold environment. With the threat of climate change etched more than ever into the public discussion, we can predict that there will be a steady increase in the amount that this material is used to make up the HVAC seals. And not just because, as temperatures continue to increase and summers get hotter and more prolonged, there will be an increased demand for them. Effective public relations It is no secret that HVAC systems can be relatively expensive to run It will become a matter of effective public relations for managers, building regulators and transport officers to make sure that the equipment they are using — and making — is ‘green’. By using the right materials that help conserve energy and increase efficiency, this will not only sit right with the general public, it should also be more economical, too. It is no secret that HVAC systems can be relatively expensive to run. Minimizing wastage, and the time spent on call outs and repairs will make a notable difference. Of course there are many other ways to also set about making air conditioning and heating units more efficient. Using seals or gaskets made from silicone is just one small piece of the puzzle. But utilizing them will almost certainly be more beneficial than you might imagine. And anything that is a step in the right direction is a welcome change.

Latest Lennox news

Lennox EMEA Organizes Learning Month For HVAC-R Sector
Lennox EMEA Organizes Learning Month For HVAC-R Sector

LENNOX EMEA, a company in the design and manufacture of heating, air conditioning, air treatment, and refrigeration equipment, through its three brands Lennox, Friga-Bohn, and HK Refrigeration, is hosting a content-rich ‘Learning Month’, which will run from April 15th to May 15th. Learning Month will comprise a series of free online webinars (in local languages) that provide professionals in the HVAC-R (Heating, Ventilation, Air Conditioning, and Refrigeration) industry with targeted insight and strategy to take their skills to the next level. Regulatory changes Among the primary ambition of these enlightening webinars is to provide information and guidance on new industry developments and trends. There will be a particular focus on different European regulatory changes, such as F-Gas and EcoDesign 2021, giving customers the essential keys to prepare for the high season and maximize potential gains. A comprehensive understanding of regulatory changes is vital for all professionals in the HVAC-R sector, from consultants and design engineers to installers, facility managers, and maintenance personnel. Delivered by the renowned Lennox University, each webinar focuses on a specific topic identified as an ‘area of concern/interest’ through discussion with customers. Use of A2L in refrigeration For example, the first webinar will center on the use of A2L in refrigeration applications. Taking place on April 15th and available in English, Spanish, and French, refrigeration installers and wholesalers will learn more about A2L refrigerants, their composition, and their use in line with current regulations. Relevant regulation studies will reveal the main benefits of A2L refrigerants, while participants will also discover more about the calculation for permissible refrigeration charge/load limits and the principles of risk analysis. Refrigerant transition Staying abreast of regulatory changes is paramount from the perspective of sector professionals, so this webinar presents a great opportunity to build knowledge and learn more about the refrigerant transition. HVAC Applications Installers, engineers, and end-users learn more about R32 as an A2L refrigerant, its suitability, and its applicable regulations in the webinars Subsequent webinars focus specifically on HVAC applications. For instance, on April 22nd, Lennox, through refrigerant comparison, will explain why R32 is a wise choice for rooftop units and how to achieve a smooth transition from R410A. Installers, engineers, and end-users will learn more about R32 as an A2L refrigerant, its suitability for different projects, and its applicable regulations in the webinars. Six language options are available: German, Dutch, English, Spanish, Italian and Portuguese. Refrigerant specifications On April 28th attention turns to understanding more about the specifics of the refrigerant changeover in HVAC applications. This webinar will set out how the F-Gas regulation is shaping the HVAC industry, and highlight the emergence of several lower-GWP refrigerants. Installers and engineers will hear about the impact of this trend and how to ensure a pain-free transition. The language options for this webinar are German, Dutch, English, Spanish, French, and Portuguese. Energy consumption These same language options apply to the next webinar, on May 4th, which will pinpoint the key facilitators that deliver optimized energy efficiency. Both end-users and maintenance professionals will benefit from registering for this presentation, the focus points of which include selecting the right IAQ (Indoor Air Quality) solution while managing energy consumption, upgrading fan technology, cloud-based monitoring, and EcoDesign 2021. Rooftop v/s chiller/AHU solution Rounding off Learning Month will be the webinar on May 11th: choosing between a rooftop or chiller/AHU solution. The differences between the two solutions, along with best-practice selection criteria, 1/2 will help installers, engineers, and end-users grasp the fundamentals required to reach the optimum decision. This webinar is available in German and Dutch. Ultimately, knowledge provides many opportunities, not least the chance to make astute selection decisions, optimize refrigeration and HVAC units for performance and efficiency, and become a source of advice and expertise. All those participating in any of the webinars at Learning Month will also get the opportunity to ask questions of the respective Lennox HVAC-R specialist.

Zigbee Alliance Developing Specification Standard For Connected Home Over IP
Zigbee Alliance Developing Specification Standard For Connected Home Over IP

As the Internet of Things (IoT) has evolved, the need has become obvious for stronger unity among brands and ecosystems to enable products within smart environments to work together more easily. Working to serve that need is the Zigbee Alliance, which seeks to promote collaboration in the Internet of Things by creating, evolving, and promoting universal open standards that enable all objects to connect and interact. Their effort took off when Amazon, Apple, Google and the Zigbee Alliance announced an industry working group in December 2019 to take the “best of market” technologies from leading smart home standards, portfolios and ecosystems and to develop a “super spec” that will be open, inclusive and a significant industry shift in the smart home market. smart home automation system “Zigbee Alliance has been for a while now working on openness and interoperability, which has led us to the Project Connected Home over IP (CHIP), which is looking to unify the environment, under one technology, one certification program and one logo,” says Chris LaPré, Zigbee Alliance’s IoT Solutions Architect. “It really does fuel IoT possibilities, whether in HVAC or any other sectors.” There is a stronger need for unity, which is why we are developing Project Connected Home over IP" Project CHIP is a royalty-free connectivity standard that unifies brands and ecosystems into a single smart home automation system that operates any other technology based on Internet Protocol (IP). The intent is to simplify product development for device manufacturers, broaden consumer choice, and to ensure easy discoverability, deployment and engagement to fuel connected living. unifies that environment “We have noticed that, as the IoT has evolved, there is a stronger need for unity, which is why we are developing Project Connected Home over IP,” says Jon Harros, Zigbee Alliance’s Director of Certification and Testing Programs. “It fits with the Zigbee Alliance’s goal to unify systems, and to focus on everyone using the same application at the top. It unifies that environment, whether you are integrating your system with Amazon Echo devices or connecting to Google Home.” Participating in development of Project CHIP are 125 companies of various types from around the world working together with more than 1,100 of their experts serving across sub-committees to formulate specifications and fine-tune the project. Although the technology is being developed for the home market, the specifications have been formulated with an eye toward expanding into the commercial market in the future. home system technologies Development of open, interoperable systems provides greater freedom for consumers to choose among the many technology choices on the market, without being tied to a single brand or ecosystem. Zigbee Alliance certifications and memberships span the globe, with roughly a third in Europe, a third in North America and a third in Asia. Involvement in Europe is slightly higher than the other regions. Alliance members represent manufacturing sites all over the world. Project CHIP is a newer initiative of the Zigbee Alliance, which previously developed Zigbee Pro to enable home system technologies to operate using IEEE 802.15.4 wireless signals on the 2.4GHz radio band over a self-healing true mesh network. The original Zigbee protocol is used for many applications around the world, including HVAC. smart temperature devices HVAC developers who have specific use cases should have a look at the work of the alliance Members of the Zigbee Alliance include HVAC companies such as Lennox, Stelpro and Belimo, among others. Carrier is a recent company that has joined the Zigbee Alliance. Smart thermostats, including the popular Ecobee, have used the Zigbee protocol. More than 100 different devices have been certified as thermostats or smart temperature devices.  Harros urges other HVAC companies to become more involved with the Alliance. “We want them to come and have a look to see what we are doing and get involved,” he says. “This is where the work is being done as we unify the environment and bring together all the devices and ecosystems to work together.” HVAC developers who have specific use cases should have a look at the work of the alliance, he adds. certification transfer program Among the strengths of the Zigbee Alliance are years of experience certifying products, which includes testing them and confirming that they comply with the promoted specifications and functionality. The specifications are open standards that are developed in cooperation with all the companies that are Zigbee Alliance members. Another route is the certification transfer program, in which a company chooses a certified white-label product, becomes a member of the Alliance, and then rebrands the product while retaining the certification. “It helps them get products on the market quickly while they build their own knowledge base,” says Harros. "All our work is focused on standardizing the behavior and functionality of products and making sure everyone is following the same standard to get interoperability,” says Harros. “Members all contribute to the standards.”

Iowa Resident Kortney Gaura Wins National Lennox 'Energy Savings Superstar' Contest
Iowa Resident Kortney Gaura Wins National Lennox 'Energy Savings Superstar' Contest

Challenged to propose a creative summer energy savings tip, Kortney Gaura of Le Claire, Iowa, chose to implement "Anything Can Happen Sundays" in her household, and her submission led her to be named Lennox’ newest "Energy Savings Superstar." The Lennox 2018 “Energy Savings Superstar” Contest offered an opportunity for consumers to think about how they devote their time and energy, and invited them to suggest simple but creative solutions for saving money on their energy bills during the steamy summer months. Gaura’s idea of filling a jar with several energy conserving tips to be implemented as a family created an opportunity for her family to spend more quality time together and save energy at the same time. home comfort solutions This is exactly the type of energy- saving advice Lennox Industries, a renowned provider of innovative home comfort solutions, was looking for when it launched the North America contest, which ran from July through August. "This year, we received hundreds of original yet innovative and creative submissions; however, Kortney Gaura suggested a relatable tip that can easily be implemented in any household wanting to save money and energy, while creating an opportunity for more family time," said Brittani Youman, Energy Efficiency Expert at Lennox. indoor air quality products Participants were encouraged to be clear, creative and above all, have fun with their submissions "Since Lennox is a recognized leader in energy-efficient heating, cooling and indoor air quality products, the Gaura family can rest easy knowing they are receiving world-class Lennox innovations that will maximize their energy savings and will keep them cool for many summers to come." For a chance to win, contestants had to describe their energy-saving tip in 1,000 characters or less, and submit a photo demonstrating their tip in action. The more creative and action-oriented the tip and photo, the better. As the grand prize winner, Kortney Gaura received: $10,000 in Lennox cooling, heating and indoor air quality equipment (including installation by J.L. Brady Company in Moline, Ill) A one-year supply of ice cream Four tickets to a water park near her home heating and cooling system As part of Lennox’ summer-long consumer education initiative on energy savings, hundreds of contestants submitted their tips along with photos of their advice in action via the Lennox Energy Savings Superstar Contest Website. Participants were encouraged to be clear, creative and above all, have fun with their submissions. Lennox selected four finalists to compete in a head-to-head public vote on the company’s website to decide the grand prize winner. "It’s exciting to know we are teaching our children at an early age how to be energy conscious and help save both money and the earth, and it’s something every family can easily do," said Gaura. "Winning a new heating and cooling system has already made a difference in how comfortable our home is, and I’m looking forward to even bigger savings with equipment that is much more efficient than what we had before."

vfd