Space Heaters - Expert Commentary

The Role Of ‘Smart’ HVAC In The Buildings Of The Future
The Role Of ‘Smart’ HVAC In The Buildings Of The Future

The last 18 months have seen an acceleration in digitalization across many aspects of work and home life. Home spaces have become workspaces, and commercial buildings have had to adapt to changed use and lower occupancy rates. Coupled with this, there is a growing need to dramatically reduce carbon emissions from buildings - according to the International Energy Agency (IEA), the buildings and construction sectors combined are responsible for over 30 percent of global energy consumption, and nearly 40 percent of carbon emissions. Installing separate systems This means that demand for a smarter approach to heating, ventilation and air conditioning (HVAC) management is crucial for building managers, who need to ensure that their properties can adapt to changed use, respond to the wellbeing of their occupants, and run efficiently to keep emissions as low as possible. Armed with this data, facility managers can take proactive steps to improve usage Of course, architects and developers have been installing separate systems to control HVAC for decades which have given building managers greater control and access to different areas of a site. However, with digitalization comes the addition of web-based platforms to allow these verticals to integrate seamlessly with each other, providing data on how efficiently and effectively a building operates through a single view application. Armed with this data, facility managers can take proactive steps to improve usage, which will see properties proactively react to the environmental and personal needs of their occupants. Centrally controlled lighting Many commercial buildings will already have a certain element of smart technology installed – from centrally controlled lighting and HVAC systems to remote management of security and energy management systems. However, it is often the case that these multiple applications are managed in silo. This means facilities managers don’t have a consolidated view of their data. In addition, not all managers will be using the data these devices produce to take steps to reduce the carbon footprint of their properties. Embracing smart technology – and a central control platform - gives building managers access to instant data on how their HVAC assets are performing in one place. This insight can be used to gain a thorough understanding of how the different systems in the building interact, and the external factors that may impact them. Effective building controls By using this data, operators can implement effective building controls to manage efficiencies By using this data, operators can implement effective building controls to manage efficiencies, identify maintenance issues, ensure the wellbeing of occupants, and inform future investment priorities. So, for example, if a building is now being used in a different way due to changed occupancy, the data will show the manager what needs to be done to ensure it is operating as efficiently as possible. We know that there will be increased demand for more flexible spaces as companies move towards remote or hybrid working models. It is likely that we will visit our offices less for day-to-day work and use them more as hubs to meet and collaborate. The ability to turn a traditional ‘bricks and mortar’ building into an agile asset that can learn and adapt to its surroundings will become increasingly important. Smart HVAC management Smart offices will become independently intelligent, learning how occupants use the space and services, adjusting lighting, HVAC and other systems to maximize health and comfort. Smart HVAC management will create a trend for ‘healthier’ buildings that will have a positive impact in terms of improved quality of life and wellbeing of occupants, ultimately resulting in higher productivity levels. In short, there has never been a better time to adopt smart HVAC technologies. Intelligent buildings that would have been unimaginable a few decades ago are now a reality. As buildings become smarter, they can learn how occupants use the space and services and proactively adjust lighting, HVAC and other systems to improve use, cut emissions and reduce energy consumption.

Heating Whole Districts Through Heat Networks
Heating Whole Districts Through Heat Networks

Pete Mills, Commercial Technical Operations Manager at Bosch Commercial & Industrial outlines how cities are using heat networks to achieve UK carbon emission targets. Heat networks, or district heating, are becoming an ever-greater part of our industry’s involvement in larger scale schemes. The ability to help the decarbonization of heat both now and in the future has made them an attractive solution to the new-build sector, as well as those undergoing deep renovation works. Net zero 2050 The UK’s net zero 2050 target may seem like a long way off. But steps need to be made now in order to reach this, something that our leading cities have recognized. Many have set their own carbon targets to ensure they stay on track. This is why heat networks’ ability to provide efficient heat and hot water to multiple buildings (and as the name suggests, whole districts) is a particular reason why many cities up and down the country are turning to them as a solution. What are heat networks? Generally, heat networks are defined as a system of supply pipes with a centralized heat generator (Energy Centre) that serves multiple domestic or non-domestic dwellings. These are usually in different buildings, but sometimes within a single large building like an apartment block or a university campus.District heating is often used to describe larger scale systems District heating is often used to describe larger scale systems of this sort, where there will be many buildings connected over a larger geographic area. In these systems, although the heat is provided ‘off-dwelling’, it is also common to have more than one energy centre. The principle is that energy for heating (and sometimes cooling) is supplied through the system of pipes, with each individual user being metered for the energy they use. Minimize pipe lengths Heat networks offer a number of advantages but are best suited to areas where there is high heat density, that is to say where there are multiple ‘households’ close together in order to minimize the length of pipes within the network. One of the key advantages for heat networks is their adaptability to use any form of heat generation. A key advantage from an environmental perspective is that they make use of waste heat, from sources such as electricity generation, waste incineration and industry. Heat networks are defined as a system of supply pipes with a centralized heat generator that serves multiple domestic or non-domestic dwellings The scale of the combined heat requirements of all these dwellings also helps the inclusion of renewable energy sources, which may be more difficult and costly to achieve at the individual dwelling level. Overall, their flexibility to use whatever heat source is available, makes them easier to decarbonize in the future.Other key benefits for Local Authorities and Housing Associations have been the elimination of individual gas appliances within dwellings. This has significant cost savings reductions for Local Authorities and Housing Associations where gas landlord checks are eliminated, along with the issues associated with access. City developments Today City Councils and developers are opting for heat networks to provide the heating and hot water for new redevelopment projects. The largest of these is the ambitious Leeds Heat Network, which once completed is set to be one of the UK’s largest new heat networks, connecting 1,983 council homes and numerous businesses in Leeds. The first scheme under the City Region’s District Heating program, the green initiative looks to reduce carbon emissions for the area as well as energy bills for the residents living there.The green initiative looks to reduce carbon emissions for the area Even more innovative is how the network will connect to the Leeds Recycling and Energy Recovery Facility, which burns black bin bag waste to generate heat. In theory this would make the network fully sustainable. There will be back-up support from efficient Bosch Commercial & Industrial boilers, which will only be switched on when required, say the colder months where the need for heat is higher. Climate change targets An hour’s drive away from Leeds is the city with one of the most ambitious climate targets in the UK. Manchester intends to be carbon-neutral, climate resilient and zero waste by 2038 – 12 years before the overall UK net zero 2050 target needs to be hit.To help achieve its ambitions, work has been taking place on the Manchester Civic Quarter Heat Network (CQHN). Manchester hasshown the versatility of heat networks due to the number of commercial buildings it will support The project will generate low-carbon power, heat and hot water for initially six council buildings and some residential properties with the possibility for the network to grow and connect further buildings across the city centre. Some see district heating as a solution solely for residential purposes, however Manchester have shown the versatility of heat networks due to the number of commercial buildings it will support. The project itself has also given Manchester a new landmark, the impressive ‘Tower of Light’, which incorporates the five flues from the technology powering the network. This beacon not only represents the city’s commitment to reducing its carbon footprint but also the innovative nature of district heating. Heating Battersea Power Station The final example lies in the Capital and may be one of the most famous developments in the UK at the moment. Battersea Power Station is not only one of the most iconic landmarks in London, but also the center piece of one of the most high-profile, large scale mixed-use redevelopment projects ever undertaken in the Capital.Battersea Power Station is a high-profile, large scale mixed-use redevelopment project The project involves the development of a district heating and cooling network, with a two-level underground energy centre – one of the largest of its kind. This complex heat, cooling and electricity network will continue to expand as the project continues to undergo its development stages. Looking ahead These are just a few examples of cities taking advantage of district heating and its many benefits, but near all cities in the UK have multiple heat network projects underway. Like with most innovations, smaller urban areas should then follow suit. The importance of district heating will no doubt become more and more prominent. Its ability to power whole areas and multiple buildings can already help efficiency levels, however its potential may be even greater in the future. One key energy transformation that is looking more and more likely is the decarbonization of the gas grid to hydrogen blends and ultimately 100% hydrogen. If these can be utilized in heat networks then the benefits will definitely put us and UK cities in a good place as we continue our journey towards net zero.

Latest Trane news

Trane Technologies To Virtually Present At The 2021 Citi Global Industrials Conference
Trane Technologies To Virtually Present At The 2021 Citi Global Industrials Conference

Trane Technologies, a global climate innovator, has announced that the company leadership will participate in a virtual fireside chat at the 2021 Citi Global Industrials Conference. They will speak at 11:20 AM ET on Wednesday, February 17, 2021. Global Industrials Conference The live webcast of the 2021 Citi Global Industrials Conference will be accessible on the Trane Technologies official website, under the investor relations section. An archive of the webcast will be available 30 days following the event. Trane Technologies is a globally renowned climate innovator. Through their strategic brands, Trane and Thermo King, and environmentally responsible portfolio of products and services, the organization brings efficient and sustainable climate solutions to buildings, homes, and transportation.

Thermo King And Envirotainer Ready For Secure Temperature Controlled Air-Transportation Of COVID-19 Vaccine
Thermo King And Envirotainer Ready For Secure Temperature Controlled Air-Transportation Of COVID-19 Vaccine

Recognizing the critical need for reliable temperature-controlled airfreight solutions for safe transportation of vaccines and pharmaceuticals, Thermo King, and Envirotainer have announced that they are ready to meet the increasing shipping needs of the healthcare and aviation industries. Thermo King, a brand of Trane Technologies is a global provider of intelligent end-to-end active temperature-controlled transport and storage solutions, across the entire cold chain. Envirotainer is one of the global market leaders in active cold chain solutions for air transport of pharmaceuticals. heating and cooling air cargo In 2005, Envirotainer together with Thermo King, developed and produced the first active, heating and cooling air cargo container validated by aviation authorities. This set a new standard in transporting pharmaceutical and other temperature-sensitive products by air. “When a vaccine is ready, the challenge for the pharmaceutical market will be getting it to the patient as fast as possible by maintaining the integrity of the cold chain,” said Francesco Incalza, President Thermo King EMEA. “Our intelligent solutions can help address logistics complexities by maintaining temperature control and tracking the integrity of vaccine shipments at all points along the journey, including during air transport. We are ready to meet the needs for the mass global distribution of the expected temperature-sensitive vaccine.” controlled room temperature Our long lasting partnership with Thermo King has led us to setting new standards in the industry" “Once vaccines become available, we know they will require temperature-controlled air freight and a global distribution in very large quantities,” said Michael Berg, CEO at Envirotainer. “Our long lasting partnership with Thermo King has led us to setting new standards in the industry. We have by far the largest container fleet and network in the industry, and we are ready to support fast and secure delivery of COVID-19 vaccines to the people that need them, wherever they are in the world.” The active containers were designed for the exacting requirements of the pharmaceutical industry. The one pallet RKN e1 container, using Thermo King Air 100 refrigeration system, and larger RAP e2 container, using Thermo King Air 200 refrigeration system, maintain product temperatures in the +2 to +8 Celsius range, controlled room temperature (+15 to +25 Celsius) range or at any chosen set temperature between ±0 and +25 Celsius in nearly any ambient condition. air cargo container Unlike passive containers, the active solutions operate on batteries in-flight, and on the ground, through an electrical connection that maintains the air-cargo container’s inside temperature while charging the batteries. Since their inception, the Envirotainer active containers have performed hundreds of thousands of real life pharmaceutical shipments. The RAP e2 is the most environmentally friendly temperature-controlled air cargo container available in the market. Delivering pharmaceuticals using the RAP e2 emits 0.9kg CO2e per vial shipped. This can be compared to, for example, a smaller passive solution’s 11.6kg CO2e per vial shipped. Both RKN e1 using Air 100 refrigeration unit and RAP e2 using Air 200 refrigeration unit are fully certified by both European Aviation Safety Agency (EASA) and Federal Aviation Agency (FAA), and are qualified as Good Distribution Practice (“GDP”) compliant for pharmaceutical transport and storage.

Trane China Launches Air Cleaning System To Improve Indoor Air Quality And Building Environmental Safety
Trane China Launches Air Cleaning System To Improve Indoor Air Quality And Building Environmental Safety

Trane China has recently launched a new suite of Air Cleaning System that applies advanced technology to reduce containments including particulates, gases and viruses, in indoor environments. The system comprehensively improve indoor air quality (IAQ) and building environmental safety under the new normal with the COVID-19 epidemic, and meet people’s added requirements for a safe, healthy and comfortable indoor environment. As healthcare, business, education and other industries are in orderly operation under the new normal of the pandemic in China, the government and all walks of life focus on how to improve IAQ, especially in public places. Due to the impact of COVID-19, people’s requirements for a safe and comfortable indoor environment have risen to an unprecedented height, which also makes the demand for high quality air conditioning and ventilation system in buildings become a new normal. Anti-virus capabilities “To prevent and control the spread of COVID-19, the State Council, the Architectural Society of China and other industry associations have issued policies, regulations and guidelines for the safe operation of air conditioning and ventilation systems in various public buildings to improve the health of the building environment,” said Steve Yan, president of Trane China. “As a global leader in HVAC, Trane has a long history of innovation. To tackle the challenges in the pandemic, we quickly developed and launched a new suite of Air Cleaning solutions with strong anti-virus capabilities that protects and improves IAQ while safeguarding public health and promoting the restoration of social and economic vitality.” Improve Indoor Air Quality by Advanced Technologies With their oxidation and iconicity, these bactericidal ionic groups can rapidly decompose chemically harmful gases Ultraviolet Germicidal Irradiation (UVGI), High Voltage Electrostatic Filter and Anion technologies, which can be applied together or independently, to improve IAQ and protect indoor environment by providing external connection and plug-in options. This innovative solution can not only quickly and easily reduce the risk of transmission of pathogens, but also effectively degrade toxic, harmful gases and odors in the air, and filter out PM2.5 particles to achieve more effective air cleaning results. Photocatalytic oxidation (PCO), through a process called photo-catalysis, uses the ultraviolet radiation to illuminate the photocatalytic material and combine the water and oxygen in the air for photocatalytic reaction, rapidly producing the high concentration of bactericidal ionic group. With their oxidation and iconicity, these bactericidal ionic groups can rapidly decompose chemically harmful gases and odors, settle suspended particulate matter, kill microbial pollutants such as viruses, bacteria and molds, and convert harmful volatile organic compounds (VOCs) to simpler chemicals, such as carbon dioxide and water. High Voltage Electrostatic Filter UVGI has a dual purpose: its primary function is an energy source for the catalytic reactions of the PCO process, while it also provides a germicidal effect on micro-organisms by using ultraviolet light in the “C” band (UVC) to damage the DNA or RNA and inactivate a wide range of micro-organisms, including fungi, bacteria and viruses commonly found in buildings. High Voltage Electrostatic Filter technology intercepts and filters out the large dust particles in the air, and then kills the suspended bacteria and other microorganisms through the powerful electric field force energy released by the high voltage electric charge instantly, making them lose their bioactivity, so as to achieve the purpose of disinfection and sterilization. Trane Air Cleaning System Our solutions will help reduce the transmission and spread of airborne diseases, such as the influenza" Anion technology can make particles with a size as small as 0.01 micron invisible to the naked eye as well as floating dust and odor molecules sink to the ground, and effectively destroy the molecular protein structure of bacteria and viruses so as to produce an antibacterial effect. Anion technology can also effectively reduce allergens and provide cleaner air. “Our unique Trane Air Cleaning System combines four technologies: High-voltage Electrostatic Filter, PCO, UVGI and Anion technologies. They can effectively remove pathogens and particles in the air,” said Bruce Gu, vice president of Engineering and Technology, Trane Technologies, Asia Pacific. “Our solutions will help reduce the transmission and spread of airborne diseases, such as the influenza, even in areas with high risks, such as medical institutions, providing more effective safety and health protection for indoor air environments in various buildings.” Low air resistance Through testing and certification by authoritative organizations, the Trane Air Cleaning System is shown to effectively ensure a healthy and safe indoor environment. The POC product can kill up to 99.9% of staphylococcus albus, and remove up to 99% of A virus like H1N1. The high voltage electrostatic filter product can achieve a purification efficiency of up to 99.3% for micro-organisms, and an effective filtration efficiency of over 99.9% for PM2.5 particles. The solution has been successfully applied in various market segments and received positive feedback Meanwhile, there is no significant increase in ozone during the process. Furthermore, the solution is characterized by low air resistance and almost no additional energy consumption on the air-conditioning system, which better support the sustainable development and operation of building owners and operators. Safeguard Public Health and Safety As a trusted partner of developers and building operators around the world, Trane has received more than 3,000 inquiries from 11 countries in the Asia-Pacific region, and has signed more than 230 orders with customers from a variety of industries. The solution has been successfully applied in various market segments and received positive feedback from customers in different industries. What’s more, Trane Technologies recently established a “The Center for Healthy & Efficient Spaces”, taking advantage of its internal and external expertise, together with innovative technologies from external experts and partners, to help customers cope with indoor environmental challenges during and after the COVID-19 outbreak, and jointly create a new normal of more sustainable development. IAQ and air-conditioning system In order to provide patients with a safer and more comfortable medical environment, and to prevent the secondary contamination of medical equipment and the invasion of other germs and viruses, the air-conditioning system in the medical industry should not only control the appropriate temperature, but also ensure absolute compliance with air quality standards. A well-known hospital in Nanjing and an elderly care facility in Suzhou of Jiangsu Province have recently applied Trane’s newly launched solution to meet the high standards and strict requirements for IAQ and air-conditioning system. People at educational facilities, which are six times as crowded as commercial and retail venues, are accordingly more exposed to the risk of contracting airborne diseases.  In order to protect the health of students with efficiency and safety, a stable, reliable and efficient sterilizing air cleaning system is particularly important for schools. A middle school in Ningbo of Zhejiang Province is stepping up the construction of its comprehensive gymnasium, which uses Trane’s central air-conditioning system together with the Air Cleaning solutions, to create a healthier, safer and more comfortable environment for students, and provide parents with greater peace of mind for their children’s safety at school. HVAC duct system The health and safety of indoor air is also particularly important for exhibition halls In addition, in early October, Trane Technologies, in partnership with Synexis, launched a more innovative technology in indoor environmental quality, which is incorporated into Trane's comprehensive portfolio of products and services for K-12 schools, aiming to further improve IAQ in school buildings. The technology, which can be integrated into the HVAC duct system or applied as a stand-alone to individual rooms or spaces, uses dry hydrogen peroxide (DHP) to reduce pathogens in the air and on surfaces. Duct-mounted systems The health and safety of indoor air is also particularly important for exhibition halls. An exhibition center in Nanjing also applied the Trane Air Cleaning System for the first time during the construction of the third phase of its venue, to create a safer, healthier and more comfortable environment for visitors and exhibitors. Trane is driving the industry to ensure a safe and comfortable indoor environment under challenging circumstances via proper air handling, filtration, ventilation and purification. Moreover, the Trane Air Cleaning System is versatile, catering to multiple applications, such as fittings to a new building, field retrofit into existing Trane (and other brands of) air handlers and duct-mounted systems.

vfd