South Dakota’s beauty and significance is often betrayed by its lack of mentions in the national news. Largely comprised of rolling prairie, pothole lakes and crystal clear streams, South Dakota is host to many natural wonders and historically significant landmarks.

The Mount Rushmore State is bookended by its two largest population centers. Rapid City lies to the west, near the iconic Black Hills and Badlands National Park, while Sioux Falls, in the southeast, is just minutes from the Minnesota and Iowa borders. Like many Western states, South Dakota has grown significantly in recent years. Its expansion has been outpaced by the growth of its largest educational institution, South Dakota State University in Brookings, just north of Sioux Falls.

On-campus research and development

SDSU is best known for its agriculture, pharmaceutical and nursing colleges

SDSU is best known for its agriculture, pharmaceutical and nursing colleges. It now boasts roughly 12,500 students. More than one million square feet of educational space has been added over the past decade, due in part to the burgeoning need for on-campus research.

The university’s recent physical plant growth has been a combination of student housing and research facilities from all colleges,” said SDSU Senior Mechanical Engineer, Zachary Rykhus. “The Ag College is in the process of significant expansion. Two research buildings are currently under construction.” Rather than simply keeping pace with the flourishing student body, leadership at SDSU had the foresight to plan for future expansion.

Cooling System Expansion

We responded to a request for qualifications issued by the South Dakota Office of the State Engineer in August of 2012,” said Greg Kronaizl, Executive Vice President at Farris Engineering Inc., adding “The University’s existing chiller plant wasn’t sufficient for the expansions they had planned and were already implementing.

Farris Engineering is a full-service MEP and fire protection design and engineering consultancy with four offices in Nebraska and Colorado. Founded in 1967 and now employee-owned, the 60-person company operates largely in the lower 48, occasionally pursuing projects abroad. The commercial, government and higher education sectors make up the bulk of their work.

Raven Precision Agriculture Center

A wellness center, a new football stadium, and three new agricultural buildings were recently constructed, or soon would be. Among them, Raven Precision Agriculture Center offers data analytics, soil sciences, precision crop production, plant pathology, mapping, precision farm machinery, and weed/pest control management among other related technologies. All told, there was a need for more than 4,000 tons of cooling.

"Based on construction schedules, half of that load was needed quickly,” said Kronaizl. “The new plant was designed with the understanding that construction would take place in two phases, separated by several years. We provided a utilities master plan and distribution of steam and cooling lines throughout the campus in addition to the plant design.

High-end chillar plant controls installed

Careful component selection resulted in a 30 percent reduction in labor cost"

Careful component selection resulted in a 30 percent reduction in labor cost,” he continued, adding “This allowed the project to move forward with the cooling capacity needed and inclusion of high-end chiller plant controls. In addition, chemical treatment of condenser water was avoided altogether.

By May of 2015, engineering work had culminated and the construction of phase one began. “One overarching theme throughout this project was to minimize wastewater,” said Kronaizl. “A good first step was to elevate the cooling towers, eliminating a great deal of the [agricultural] dust that would have otherwise settled inside and atop the cooling towers, and generally making service of all outdoor equipment easier.

EVAPCO counter-flow cooling towers installed

Agricultural facilities occupy the northwest corner of the campus. Crop production studies in adjacent fields create dust at various times of the year.

During phase one of the project, Midwestern Mechanical Inc. installed three, two-cell EVAPCO counter-flow cooling towers made of 304/304L stainless steel. The towers were supplied by EVAPCO’s rep firm G&R Controls. The units provide 2,250 tons of combined cooling capacity. Six, 750-ton Trane electric-driven centrifugal water chillers are installed in the chiller plant building below the towers. The facility also includes a free-cooling heat exchanger for winter cooling operation equivalent to approximately 1,000 tons.

Alternative Water Treatment solutions

Two other elements, non-chemical treatment solutions and the use of plastic pipe, helped reduce the amount of wastewater produced by the cooling systems and eliminate the associated cost and environmental impact of chemical treatment.

 “Water quality in Brookings is OK for cooling tower applications; not great but not horrible,” said Brandon Punt, Division Sales Manager at Jaytech Inc., one of the nation’s largest water management solutions providers. “Hardness and alkalinity are two concerns with source water, while microbial growth will result from atmospheric exposure if water treatment isn’t handled properly.

Pulse~Pure non-chemical water treatment system

The mechanical system design includes EVAPCO’s Pulse~Pure non-chemical water treatment system for the condenser water

The mechanical system design specified use of EVAPCO’s Pulse~Pure non-chemical water treatment system for the condenser water. This technology uses pulsed electrical fields to solve all three critical water treatment challenges typical of open-loop cooling systems: scale, corrosion and microbiological activity. In a Pulse~Pure system, re-circulated water from the evaporative cooling system passes through the pulse chamber where it’s exposed to alternating high and low frequency electric fields. This impacts both the surface charge of small suspended particles and free-floating microbial organisms found in cooling water.

The school was seeking a net zero discharge for sustainability reasons,” said Kronaizl. “Conserving water was equally important as avoiding chemical use. We’ve used Pulse~Pure successfully on smaller projects in the past. When we installed it at six district plants for the Lincoln District Energy Corporation, the factory support was very good, so we didn’t have any hesitation to use it on a bigger job. We also took other steps to minimize the water treatment capacity needed at SDSU.

Innovative Piping Solution

Instead of piping the cooling system with steel, plastic pipe was used throughout. ISCO Industries HDPE pipe was used for all underground chilled water lines, while PP-RCT (polypropylene) was used for all condenser water piping within the cooling plant itself.

The first benefit of using plastic pipe is that it greatly reduces the amount of metal surfaces that cooling system fluid comes in contact with,” explained Kronaizl. “The second benefit was a 30 percent reduction in labor cost compared to steel pipe. Lighter material is simply easier, faster and safer to handle.

Accelerated Schedule and Optimal Control

Initially, the football stadium was considered a future potential connection to the new chiller plant, as it was located on the east side of main campus and currently using remote chillers. When donor funding became available, the schedule was accelerated. The university decided to fast-track integration of the stadium with the new chiller plant. Seating 19,340 fans, the Dana J. Dykhouse Stadium is home to the SDSU Jackrabbits.

This created a shift in priorities,” said Kronaizl, further adding “Plant construction was accelerated, and the installation of chilled water lines to the stadium took precedence over providing chiller plant capacity to other buildings.

Remote Access and Automated Controls

The university wanted remote access and fully automated controls at the new chiller plant

The university wanted remote access and fully automated controls at the new chiller plant. Johnson Controls’ Metasys-powered Central Plant Optimization 10 was installed. This system permits interface between any brand of equipment and the JCI Metasys architecture; it uses PID feedback control, set-point adjustments, and provides efficiency curves for plant optimization.

The facility’s layout and design are as conducive as any as far as operating and maintaining the plant is concerned,” said Rykhus, adding “The plant is almost entirely automated so it does not require anyone to be on-site during normal operation.

Cooling towers installed

Farris Engineering designed phase two as an exact mirror image of phase one, again, using Pulse~Pure as the sole form of water treatment. Three more, identical cooling towers are to be installed over the summer of 2019, bringing the total cooling capacity of the chiller plant to 4,500 tons.

Phase one was operational in August 2016, serving the stadium and a variety of other buildings. Phase two, when complete in October 2019, will provide cooling capacity to a 60,000 square-foot Animal Disease Research addition and future Precision Ag facility.

Second phase of chiller plant

Krier & Blain was contracted to install the second phase of the chiller plant

Krier & Blain, a large mechanical firm out of Sioux Falls, was contracted to install the second phase of the chiller plant. Roughly two years passed between the two projects, giving managers time to assess the performance of the new system’s installed components so the design could have been changed, if needed.

The only change made to the original design was cancelling the installation of a screen wall around the chiller plant for aesthetic reasons. The university was initially concerned that the cooling towers would be an eyesore. This was not the case.

New chillar plant installed

I conducted a full cooling tower inspection last time I was at SDSU,” said Punt, adding “The towers were extremely clean.

Despite the addition of the new football stadium, installation of the new chiller plant proceeded as scheduled, and all components of the system met the university’s expectations. South Dakota State University’s new expansion is proof that adding infrastructure does not need to increase environmental impact.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

HVAC Companies in the News as Cold Weather Pummels United States
HVAC Companies in the News as Cold Weather Pummels United States

Deadly cold weather recently made headlines in Texas, where wintry conditions knocked out power to around 4.5 million homes at one point. Power outages, combined with freezing conditions, sent Texans scrambling for home heating alternatives, such as generators and fireplaces, and to seek shelter in powered warming centers or businesses. Some resorted to living in running cars. Snow, ice and extreme cold have been widespread this year in the Mid-Atlantic and Northeast United States, too. At one point, 78 million Americans were under a winter weather alert, and more than 27 million were under a hard-freeze warning. More than 2,500 new records were set for lowest high temperatures. At least 38 people nationwide died from winter storms or frigid conditions. Additional Challenges for HVAC Industry For HVAC companies, the cold weather means more business, and additional challenges to serve their customers' needs. Local TV stations often turn to HVAC installers to provide commentary and insights about their surge in business brought on by Mother Nature.Sub-zero weather translated into below-freezing indoor temperatures for some HVAC customers In Lincoln, Neb., for example, sub-zero weather translated into below-freezing indoor temperatures for some HVAC customers whose furnaces were not running. Many of the systems had been badly maintained, operated inefficiently, and/or were beyond their life expectancy. “We’ve had some guys that have houses that their furnaces aren’t running, we’ve had some houses at 31 degrees, 34 degrees,” said John Henry’s HVAC Service Technician, Thaddeus Bertsch, interviewed by 10/11 KOLN News. Issues with Frozen Pipes "As [cold weather] goes on, we are starting to get more calls for frozen pipes," adds Keith Jackson with Jackson Plumbing, Heating, and Cooling, Decatur, Ala. "People have no water," he told WZDX Fox News. HVAC technicians stay extra busy working in the snow and dropping temperaturesAlso, outdoor heating and AC units were shutting down. The units were freezing up, and frozen rain and ice affected the operation of the outside condensers. The company had crews out trying to help people with frozen pipes across Decatur and beyond. HVAC technicians stay extra busy working in the snow and dropping temperatures. For instance, business tripled for Jarboe’s Heating, Plumbing and Cooling in Louisville, Ky. Field technicians were working longer hours because of heaters going out, reported WDRB News in Louisville. "As soon as the phones are open, they’re ringing" For two days in February, by nine o’clock in the morning, J.E. Shekell Inc. in Evanstan, Ind., already had received over 30 service calls. "As soon as the phones are open, they’re ringing,” said Jim Poag of J.E. Shekell Inc. A report by WFIE 14 News in EvanstanFrigid temperatures cause furnaces to work extra hard to keep houses warm highlighted how frigid temperatures cause furnaces to work extra hard to keep houses warm. Depending on how well they are maintained, and how old the machine is, it can sometimes be too much. “We’ve been getting a lot of calls, several, you lose count after a while, just trying to help as many people as we can right now. It’s probably about my seventh call of the day so, we’re out trying to help as many people as we can,” said John Hambleton of Lyerla Heating & Air, Joplin, Mo. Dangerous temperatures and winds Lyerla Heating and Air received 300 service calls in just two days on Feb. 15-16. Like many of the local media reports, KSN News in Wichita, Kan., emphasized the need to prevent untimely breakdowns by getting units serviced before dangerous temperatures and wind chills set in. Staff at Wiersgalla Plumbing & Heating, Eau Claire, Wis., says service calls had risen roughly 25% when the cold rolled in. Staff worked extended hours to fix broken heaters and frozen home exhausts. "Over the last week and a half, we've experienced an increase in calls obviously because of the cold," said Christina Wiersgalla, VP of operations for Wiersgalla Plumbing & Heating, Eau Claire, Wis., in a report by WQOW 18 News. Among the consequences of brutal winter weather are a greater appreciation of the work of HVAC companies and an opportunity to shine a spotlight on how they keep customers comfortable in their homes and businesses.

Lessons From The Past: The Value Of Ventilation In A Pandemic
Lessons From The Past: The Value Of Ventilation In A Pandemic

If history truly repeats itself, might we learn lessons from the past – even lessons about managing a novel coronavirus that upends our way of life and changes the world forever? The most commonly cited parallel to the COVID-19 pandemic is the Spanish flu pandemic of 1918. Both diseases are caused by viruses that had not been seen before. In both cases, no one had immunity to a highly infectious germ that was spread through respiratory droplets. Both outbreaks occurred in multiple waves over several years. Furthermore, in both cases, it became clear that ventilation, fresh air, open spaces and sunlight are useful factors in promoting good health. Fresh Air Movement During the time of the Spanish flu, there were signs posted in buses and throughout New York that advised: "Keep your bedroom windows open [to] prevent influenza, pneumonia [and] tuberculosis." There was even a national campaign known as the “Fresh Air Movement,” calling for people to be outside more, and urging greater ventilation indoors. The movement included a kind of traveling show that spread the word about the “national poison,” which was the result of people breathing stale air inside closed rooms. These concerns predated by decades our enthusiasm for “indoor air quality.” In became common after 1918 to position radiators providing steam heat under open windows to combine warmth with fresh air, even on the coldest of days.   The Open-Air Treatment of Pandemic Influenza It was also common practice by 1918 to place the sick outside in tents or in specially designed open wards But the advantages of fresh air go back even further, as described in a 2009 article in the American Journal of Public Health (AJPH) titled “The Open-Air Treatment of Pandemic Influenza.” During the 1918 pandemic, as today, many cities banned public assembly, closed schools, isolated those infected and mandated the wearing of face masks. It was also common practice by 1918 to place the sick outside in tents or in specially designed open wards, according to the AJPH article. The practice dates back to English physician John Coakley Lettsom (1744-1815), who was among the first advocates of the “open-air method.” The 1800s saw emergence of tuberculosis sanitoriums, which treated the lung disease with a combination of fresh air, gentle exercise in the open, nutrition, and a minimum of medicines. Lack of ventilation Spending time in well-ventilated houses in the country became seen as superior to patients being confined to warm, badly ventilated rooms to protect them from the supposedly harmful effects of cold air. Lack of ventilation forced patients to breathe foul air, contaminated with germs, over and over. Research later confirmed the importance of measures to prevent influenza virus from spreading through buildings. Improvements in air-handling equipment, portable filtration units, and introduction of physical barriers and other partitions or doors also provided protection. These lessons were clear long before the advent of the novel coronavirus that causes COVID-19. Their successful deployment during the pandemic have further supported their value. importance of HVAC Although the COVID-19 pandemic caught the world off-guard, there were plenty of historical precedents However, lockdowns during the pandemic have also tended to keep the population closed up in buildings, sometimes with less-than-adequate ventilation and access to fresh air. In retrospect, some of those decisions seem regrettable.  Although the COVID-19 pandemic caught the world off-guard, there were plenty of historical precedents. Copious research over the years supported the best approaches to stemming the spread of the virus, although it took time for historical insights to work their way into the general practice implemented in the current pandemic. There is also historical precedent for the importance of HVAC in the current pandemic. Ventilation and fresh air have become higher priorities, as has the HVAC market’s role in providing a safer indoor climate with minimal disease spread.

Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term
Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term

According to the latest statistics, Britain now has the highest daily COVID-19 death rate in the World, following an unfortunate record month of fatalities during January 2021. While UK Government is quick to defend this statistic, the fact remains that our country has been crippled by the SARS-CoV-2 virus, and now, as the population battles through yet another lockdown, it seems that the only 'way out’ is through widespread vaccination. impact of COVID-19 Though imperative, this strategy emphasizes the real challenge that Governments across the globe have faced in trying to control this virus; that reducing the transmission or ‘R rate’ is reliant on the behaviors of people. People who have lived with some form of restrictions for too long, people who are frustrated and tired of the impact COVID-19 has had on their businesses, and people who have simply lost trust in Government U-turns and last-minute decisions. What’s more, despite the best efforts of millions to comply with restrictions, the virus itself is one that is hard to contain, particularly with asymptomatic cases unknowingly passing it to others in key locations like supermarkets or via public transport. Regardless of this challenge, there is a solution that doesn’t rely on changing people’s behaviors, but rather in changing the environment in which people live, work and socialize. That solution is the implementation of Active Air Purification Technology. What Is Active Air Purification Technology? Active air purification technology is effective in every cubic cm of indoor air and surface space simultaneously and continuously Most air purification technologies are passive in that they can only have any effect when the air containing the pollutant comes into close proximity or passes through the unit. Examples of this are filtration, UV-C, and various PCO and ionization technologies. In other words, certain operational conditions must be met in order for them to be effective. Active air purification technology is not limited in this way and is effective in every cubic cm of indoor air and surface space simultaneously and continuously. This means pollutants, like viruses and bacteria, are instantly treated no matter where or when in the indoor space they are emitted or exposed which is significant in the context of COVID transmission. Whether required to mitigate microbials, allergens, or dangerous gases and VOCs, active technology offers a unique solution to destroying microbials instantly, offering a safer, cleaner, and more effective approach to air purification in domestic, commercial, and industrial environments. REME Air Purification Technology REME is an active air purification technology developed and patented 15 years ago by RGF Environmental Group, a COVID critical environmental innovator and manufacturer headquartered in the United States. Using no chemicals or harmful substances, REME comprises a number of known air purification technologies and sciences in one product. Its active capability works by producing and maintaining similar concentrations of hydrogen peroxide molecules as those found in the outdoor air and combines a process of bipolar ionization. When coming into contact with microbials, the naturally occurring ionized molecules break them down, destroy them and then revert them back to harmless water vapor and oxygen. The bipolar ionization effect causes other airborne particulates to agglomerate together causing them to become larger and heavier and drop out of their air or get captured in HVAC filters. RGF’s REME air purification technology produces 1 quadrillion ionized hydrogen peroxide molecules every second, quickly and safely killing any airborne virus or bacteria, including SARS-CoV-2 on a continuous basis. Its effectiveness has been verified by nationally accredited independent labs and testing bodies in the US and by other governments in numerous tests over two decades, with results also confirming a 99%+ inactivation for highly infectious viruses and bacteria, such as H1N1 or ‘Swine Flu’, SARS, Norovirus, MRSA and Bird Flu, just to name a few. Vaccinate Environments And People Air purification technology drives down the R rate for good by effectively vaccinating the air in which the virus circulates In understanding exactly how active air purification technology works and its capability to successfully destroy COVID-19, it’s clear that it presents an opportunity to drive down the R rate for good by effectively vaccinating the air in which the virus circulates. This strategy is already working its way through the United States with leading brands, like restaurant chain TGI Friday, installing active air purification technology across all establishments and has also caught the attention of renowned insurance market, Lloyds of London, which has installed the technology across all UK offices to ensure its 5,000 plus staff members can return safely to work. Improving the environment For nearly 12 months the world has been coping with COVID-19, describing it as an ‘unprecedented period’ where there is no clear end. However, in vaccinating both people and the environment in which it lives, the virus can be controlled once and for all. Ultimately, with a crippled economy, in excess of 100,000 deaths and a generation of children impacted by the closure of schools, now is the time to accelerate response and change the environments in which the virus circulates, not just the people. 

vfd