LG Air Conditioning Technologies USA has expanded its robust portfolio of single- and multi-zone products with LGRED (Reliable to Extreme Degrees) technology, bringing powerful heating capability to more single zone products, so as to push the industry forward in the electrification of residential and light commercial building sectors.

Single zone products with LGRED

Boasting superior heating capacity performance down to 5 °F and continuous heating operations down to -13 ˚F, products featuring LGRED heat technology efficiently deliver heat during colder weather.

LG single zone systems with LGRED technology provide home-owners with an electric option that reliably delivers year-round heating and cooling in an all-in-one inverter heat pump system. For cold climate zones especially, the systems offer a greener alternative replacing expensive, supplemental heat sources.

Flexible solutions 

As the movement to reduce the impact of traditional fossil fuels progresses, the expansion of LG single zone systems with LGRED technology makes significant strides in the market preference for a more efficient and connected home. By offering flexible solutions for maximum occupant comfort in extreme temperatures, homeowners now have one system to heat and cool, as well as the convenience of only one system to maintain.

An added benefit that the launch of LG Air Conditioning’s new single zone systems gives homeowners and contractors the opportunity to take advantage of the growing number of federal, local, and utility rebates and incentives to offset the upfront installation costs, making the switch more accessible and affordable while capturing the long term benefit of this technology.

Integrated with LG Inverter technology

ENERGY STAR certified product line-up also comes packed with other industry-renowned benefits of inverter technology

Featuring LG Inverter technology, the new single zone products with LGRED technology can intelligently sense the air conditioning demand, proportionally ramping the inverter compressor up or down. This is unlike traditional systems which have limited ability to calculate proportional energy use relative to the demand.

The ENERGY STAR certified product line-up also comes packed with other industry-renowned benefits of inverter technology, such as enhanced acoustic comfort, as well as compatibility with the LG ThinQ app, so as to provide access to an ecosystem of LG products from any smart device, including Google Home or Amazon Alexa.

LG single zone systems

Offered in varied capacities that range from 18,000 to 48,000 Btu/h, the expanded suite of LG single zone systems meets a variety of home and load sizes. They are also matched with ducted and ductless indoor unit styles, including the LG Multi-position Air Handler Unit. LG single zone system products now featuring LGRED heat technology include:

  • LG Multi-position Vertical AHU Systems,
  • LG High Static Ducted Systems,
  • LG Low Static Ducted Systems, and
  • LG 4-Way Ceiling Cassette Systems.

Energy efficient electric options

As regional initiatives and demand for electrification gain ground, we’re seeing more and more incentives and rebates for the fossil fuel replacement market. By expanding LGRED in our single zone suite, LG Air Conditioning Technologies USA is responding to the market by providing home-owners and contractors with energy efficient electric options that were previously out of reach in colder climates,” said Steven Scarbrough, Senior Vice President and General Manager at LG Air Conditioning Technologies USA.

Steve adds, “As one of the only manufacturers to bring cold climate heat pumps that don’t require an auxiliary heat source to market, LG is continuing to deliver advanced innovations that meet customer needs, while moving the industry forward in overall efficiency and clean energy.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

How Will Remote Working Affect HVAC?
How Will Remote Working Affect HVAC?

The practice of working from home soared during the coronavirus (COVID-19) pandemic and many observers see a likely continuation of the trend, as infection risks gradually subside. Both environments – home and office – depend on HVAC systems to keep occupants comfortable (and safe!). Therefore, the industry stands to be impacted whichever way the trend plays out. We asked our Expert Panel Roundtable: How will remote working affect residential and commercial HVAC?

Active Technologies Needed For Indoor Air Quality As Pandemic Plays Out
Active Technologies Needed For Indoor Air Quality As Pandemic Plays Out

The most likely scenario for the next 12 months in the United Kingdom is far lower risk of serious COVID-19 illness due to the vaccine. However, there will be big swings in R rates, and there is uncertainty about how effective vaccines will be against COVID variants. The ‘R’ rate is the number of people one infected person will pass a virus on to, on average. As the scenario plays out, and more companies open for business, issues of indoor air quality will continue to be top of mind. The UK cannot stay in lockdown forever, so the big question becomes: What will happen when R rates rise again? Significant illness transmission “People have become far more concerned about building safety issues because we are dealing with a deadly virus that transmits when people don’t realize they have it,” says Andrew Hobbs, CEO and founder of Surrey-based air quality and HVAC specialists Better Indoors. HAIs, including COVID, are still a major issue in National Health Service hospitals The guidance of increasing ventilation air changes and using passive systems like filters and UV has been the only mitigation for dealing with indoor air quality (IAQ) issues for many years, yet homes and offices still allow significant illness transmission, says Hobbs. Healthcare-associated infections (HAIs), including COVID, are still a major issue in National Health Service hospitals in the UK, and R rates generally rise when physical distancing measures are relaxed. Air purification solutions “It is because ventilation and passive processes do not destroy viruses at the point of transmission and until we introduce technologies that do, we will always be stuck in this loop,” says Hobbs. Better Indoors works to create the safest possible indoor environments for homes, offices, factories and on transport. Their active air purification solutions destroy viral emissions at the point of transmission – an essential feature for controlling indoor R rates, according to the company. “We are the UK’s exclusive distributor of unique technology that has been around for over 20 years and is used in millions of applications around the world,” said Hobbs. “This attribute is proving to be a key differentiator as firms race to futureproof their buildings and make their indoor spaces as safe as possible for staff and customers.” Master exclusive distributor Better Indoors is a master exclusive distributor to RGF Environmental Inc. Better Indoors is a master exclusive distributor to RGF Environmental Inc. of the United States, with a territory in the United Kingdom and Northern Ireland. Better Indoors supports agents and wholesalers, providing training and education on how to specify, install and provide aftersales services. They also have a strong relationship with various operating businesses of Volution plc for their ventilation products. Passive technologies have been strongly promoted, as have ionization-only technologies. Less well promoted have been RGF Environmental’s photohydroionisation (PHI) and Reflective Electro Magnetic Energy (REME) technologies, which have had major impact where they have been installed. Photohydroionisation mimics nature’s air cleaning process indoors by creating an equilibrium concentration of ionized hydrogen peroxide molecules throughout the indoor space. More effective process These molecules react with viruses on contact, revert to water vapor and oxygen afterwards, and are replaced with new ones from the units. The process is continuous, safe and effective, says Hobbs. REME units contain an additional process of bipolarionization for particulate agglomeration also. Products include in-duct, in-AC units and standalone, plus individual units containing individual technology pieces to complement existing infrastructures. Our technology is the safest for COVID and every single future virus that comes along" Not all potential technologies have been tested in the fight against the novel coronavirus. If they had, the resulting guidance should include technologies that kill the virus at the point of transmission, which are safe and proven with millions of users. “Our technology is the safest for COVID and every single future virus that comes along,” says Hobbs. “You cannot get a safer more effective process than one that kills a virus at the point of transmission that is not dependent on the actions of behaviors of anyone or anything.” Offering maximum protection “We have learned the main route for viral illness transmission is in the air,” says Hobbs. “It is therefore essential that we future-proof our buildings and indoor spaces to the best extent possible so they offer maximum protection for when the next deadly pathogen comes along but also to minimize common illnesses going forward. The best possible protections come from IAQ processes that physically destroy viral emissions at the point of transmission rather than relying on moving it somewhere first like all filter and UV processes.” There are very few testing techniques that properly test certain technologies" One of the biggest misconceptions in IAQ is the difference between whether a particular passive IAQ process actually works and the limitations of how it works, Hobbs notes. “This is constantly misrepresented, misunderstood, and there are very few testing techniques that properly test certain technologies.” Technologies under consideration For example, the effect and performance of UV technologies are significantly limited by line of sight, inverse square law and dwell time, but this is rarely if ever mentioned, he adds. “Yes, it works but only if certain severely limiting conditions are met,” says Hobbs. “Furthermore, the industry-accepted testing metrics are designed for passives and not active systems, and this needs to be addressed also.” None of the other new technologies under consideration, such as Far UV, will be able to destroy the virus at the point of transmission because of their already known physical limitations. “We have been arguing for months that our active technology must be made mandatory for indoor spaces because it is the only method that can stop R rate rises regardless of which variant we have,” says Hobbs.

Innovative Technologies Will Drive The Future Of HVAC
Innovative Technologies Will Drive The Future Of HVAC

Innovation is a driving force behind most industries, including HVAC. Keeping up with industry research, and looking toward the future, helps HVAC professionals to anticipate upcoming changes to the industry, and to be prepared when they happen. There is no shortage of innovation in the sphere of HVAC. I recently came across some interesting designs (and one product already on the market!) that provide a useful glimpse into the types of projects that may shape the HVAC industry of tomorrow. Large-Scale Air Purification System A new purification system on the horizon provides higher levels of purification and sanitation for large-scale applications such as hotels and other big businesses. It also seeks to protect HVAC service employees from exposure to viruses when they service a system. Rather than filter out viruses, the system destroys them with photocatalysis, which uses a semi-conductor to create radicals to zap the viruses. Photocatalysis has been around for decades but is only now becoming refined enough to provide a marketable solution. Promethium, the company seeking to bring the filtration to market, evolved from the work of two the University of Nevada, Las Vegas (UNLV) students, and a University of California (UC) Berkeley graduate. The technology can be used in several ways – from water purification to energy generation – but purifying air is the first priority. Each unit is customized for a specific application, but a “basic” standard unit starts at around $10,000 and can clean 40,000 square feet of space, enough for a casino gaming floor, for example. The project won $250,000 in a contest sponsored by UNLV’s Lee Business School and has also signed a research agreement with Purdue University. It should be ready to go to market this year. Dual-Mode Heating and Cooling Device Duke University is demonstrating the heating and cooling capabilities of nanomaterials, including a dual-mode heating and cooling device that could lower HVAC energy costs by nearly 20% in the United States if widely deployed. The invention combines mechanics and materials science to either harness or expels certain wavelengths of light. Depending on conditions, rollers move a nanomaterial sheet back and forth to expose either heat-trapping materials on one half or cooling materials on the other. Designed at the nanoscale, one material absorbs the sun’s energy and traps existing heat, while the other reflects light and allows heat to escape. Flair’s Smart Vents are DIY devices that fit into existing floor and wall register slots in standard sizes The cooling portion of the sheet has ultra-thin silver film covered by an even thinner layer of clear silicon. Together, they reflect the sun’s rays like a mirror. The unique properties of the materials also convert energy into mid-range infrared light, which does not interact with the gasses in the Earth’s atmosphere and easily passes into space after it is emitted. For heating, an ultra-thin layer of copper is topped by a layer of zinc-copper nanoparticles, which interact with the copper beneath them to trap light onto the surface, thus absorbing more than 93% of the sunlight’s heat. The “reversible thermal contact” allows users to switch between two modes of heating or cooling. The device would be especially useful in the world’s temperate climate zones that require both heating and cooling during the year – and sometimes requires both within a single 24-hour period. Do-It-Yourself Smart Vents Flair’s Smart Vents are do-it-yourself (DIY) devices that fit into existing floor and wall register slots in standard sizes. The vents control airflow across individual rooms to boost efficiency. Electronics for the low-profile devices are contained in a casing that rests under the floor level. They can be hard-wired for power or can use two C batteries. The Smart Vents work with smart thermostats and/or with Flair’s Puck cylindrical devices that include temperature control and monitoring. The Smart Vents coordinate their open/shut status depending on temperature needs. For example, the vents can be used to equalize the temperature and route heating and cooling intelligently. It can provide a solution if one room is too cold when cooling or too hot when heating. The approach is aimed at approximating the results of zoned HVAC systems at much lower costs and to replace existing wall ducts.

vfd