Daikin companies in North America (Goodman Global Group, Inc.; Daikin North America LLC; Daikin Applied Americas Inc.; Daikin America, Inc.; and Daikin U.S. Corporation) announced they are developing ducted and ductless residential, light-commercial, and applied products utilizing R-32 refrigerant.

In evaluating alternative, low global-warming-potential (GWP) refrigerants for North America, Daikin–a global technology pioneer in the heating, ventilation, and air conditioning (HVAC) industry–is focused on reducing greenhouse gas emissions and climate impacts. The company also took a holistic approach to include safety, energy efficiency, and cost-effectiveness.

Based on comprehensive evaluation and testing, Daikin concluded R-32 is the ideal low-GWP alternative to R-410A for many key residential, light commercial, and applied products in North America. Daikin’s choice of R-32 is based on the beneficial attributes of the refrigerant. Compared to R-410A and certain alternative refrigerants, R-32 can mitigate effects of direct refrigerant emissions by reducing the equipment refrigerant charge.

Daikin believes R-32 can effectively help to minimize the environmental impact of HVAC equipment

Reduce Refrigerant Charge


Daikin has found that in comparison to R-410A, R-32 has a drastically lower GWP and could reduce refrigerant charge in certain equipment by up to 40 percent. The company has also found that equipment using R-32 can be more energy efficient and compact–thereby consuming fewer manufacturing resources–when compared to equipment using R-410A or certain alternative refrigerants.

Daikin believes that R-32–a pure, single component refrigerant available globally from multiple suppliers–is easier to reuse, reclaim, and recycle when compared to other refrigerants that are blends of R-32 and other components. In summary, Daikin believes R-32 can effectively help to minimize the environmental impact of HVAC equipment.

Dominant Refrigerant For Residential HVAC Equipment

The choice of R-32 for the North American region is consistent with the wide global acceptance of the refrigerant. In Japan, R-32 is the dominant refrigerant for residential HVAC equipment while in other Asian countries—including China—and in many European countries, the refrigerant has become an increasing popular choice for HVAC equipment.

Daikin has estimated that more than 84 million R-32 residential units have been installed by the industry across 70 countries. According to a Japan Air Conditioning, Heating & Refrigeration News, Ltd. (JARN) report, in 2018 alone, over 25 million residential units using R-32 were sold worldwide, accounting for more than 25 percent of total residential units sold in that year. This number is expected to increase in 2019.

R-32 For Ducted And Ductless Residential Products

The company was the first to introduce R-32 residential air conditioners and heat pumps globally

Furthermore, in the United States, acceptance of the refrigerant has already begun in some HVAC applications: JARN reports that in 2018, almost half of window air conditioning units sold across the U.S. used R-32.

By selecting R-32 for various ducted and ductless residential, light-commercial, and applied products, Daikin is extending its leadership position in North America. The company was the first to introduce R-32 residential air conditioners and heat pumps globally and has, since 2012, sold more than 21 million R-32 residential units worldwide.

Measurable Environmental And Performance Qualities

To advance the adoption of R-32, Daikin has committed to share its knowledge and expertise. Earlier this year, Daikin announced its patent non-assertion pledge of identified patents to further facilitate the use of the R-32 in HVAC products.

Daikin has also provided education and training programs for the refrigerant–programs that have been supported by many governmental agencies. Daikin’s overarching goal is to ensure that North America can benefit from the use of a refrigerant that provides measurable environmental and performance qualities that will advantage the environment and consumers.

Effect Of Air Conditioning

We know that the net effect of air conditioning on the environment is a combination of the refrigerant used and energy consumed,” said Daikin Applied Americas’ President and CEO Mike Schwartz. “R-32 enables home and building owners to achieve reduced climate impact, superior performance, and operational savings. Daikin is in a unique position as a manufacturer of both HVAC equipment and refrigerants.

R-32 brings many benefits including energy efficiency, resource reduction, and environmental mitigation"

“Our approach has always been to use our expertise to choose the right refrigerant for each application. R-32 is the right low GWP refrigerant choice for many of our residential, light-commercial, and applied products in North America.”

Right Choice For HVAC Manufacturers

Goodman Global’s President and CEO Satoru Akama said, “Daikin’s choice of R-32 demonstrates our strong commitment as a U.S. HVAC manufacturer to minimize environmental impacts of our equipment including the reduction of greenhouse gas emissions. R-32 brings many benefits including energy efficiency, resource reduction, and overall environmental mitigation. Based on our global experience, we are confident R-32 is the right choice for HVAC manufacturers, contractors, and consumers.”

Daikin’s North American production of R-32 products is the latest step in its efforts to advance technologies that reduce environmental impact and provide consumers superior technology. These efforts will take account of the developments in various North American jurisdictions as they enact appropriate regulations, codes, and standards.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

HVAC Companies in the News as Cold Weather Pummels United States
HVAC Companies in the News as Cold Weather Pummels United States

Deadly cold weather recently made headlines in Texas, where wintry conditions knocked out power to around 4.5 million homes at one point. Power outages, combined with freezing conditions, sent Texans scrambling for home heating alternatives, such as generators and fireplaces, and to seek shelter in powered warming centers or businesses. Some resorted to living in running cars. Snow, ice and extreme cold have been widespread this year in the Mid-Atlantic and Northeast United States, too. At one point, 78 million Americans were under a winter weather alert, and more than 27 million were under a hard-freeze warning. More than 2,500 new records were set for lowest high temperatures. At least 38 people nationwide died from winter storms or frigid conditions. Additional Challenges for HVAC Industry For HVAC companies, the cold weather means more business, and additional challenges to serve their customers' needs. Local TV stations often turn to HVAC installers to provide commentary and insights about their surge in business brought on by Mother Nature.Sub-zero weather translated into below-freezing indoor temperatures for some HVAC customers In Lincoln, Neb., for example, sub-zero weather translated into below-freezing indoor temperatures for some HVAC customers whose furnaces were not running. Many of the systems had been badly maintained, operated inefficiently, and/or were beyond their life expectancy. “We’ve had some guys that have houses that their furnaces aren’t running, we’ve had some houses at 31 degrees, 34 degrees,” said John Henry’s HVAC Service Technician, Thaddeus Bertsch, interviewed by 10/11 KOLN News. Issues with Frozen Pipes "As [cold weather] goes on, we are starting to get more calls for frozen pipes," adds Keith Jackson with Jackson Plumbing, Heating, and Cooling, Decatur, Ala. "People have no water," he told WZDX Fox News. HVAC technicians stay extra busy working in the snow and dropping temperaturesAlso, outdoor heating and AC units were shutting down. The units were freezing up, and frozen rain and ice affected the operation of the outside condensers. The company had crews out trying to help people with frozen pipes across Decatur and beyond. HVAC technicians stay extra busy working in the snow and dropping temperatures. For instance, business tripled for Jarboe’s Heating, Plumbing and Cooling in Louisville, Ky. Field technicians were working longer hours because of heaters going out, reported WDRB News in Louisville. "As soon as the phones are open, they’re ringing" For two days in February, by nine o’clock in the morning, J.E. Shekell Inc. in Evanstan, Ind., already had received over 30 service calls. "As soon as the phones are open, they’re ringing,” said Jim Poag of J.E. Shekell Inc. A report by WFIE 14 News in EvanstanFrigid temperatures cause furnaces to work extra hard to keep houses warm highlighted how frigid temperatures cause furnaces to work extra hard to keep houses warm. Depending on how well they are maintained, and how old the machine is, it can sometimes be too much. “We’ve been getting a lot of calls, several, you lose count after a while, just trying to help as many people as we can right now. It’s probably about my seventh call of the day so, we’re out trying to help as many people as we can,” said John Hambleton of Lyerla Heating & Air, Joplin, Mo. Dangerous temperatures and winds Lyerla Heating and Air received 300 service calls in just two days on Feb. 15-16. Like many of the local media reports, KSN News in Wichita, Kan., emphasized the need to prevent untimely breakdowns by getting units serviced before dangerous temperatures and wind chills set in. Staff at Wiersgalla Plumbing & Heating, Eau Claire, Wis., says service calls had risen roughly 25% when the cold rolled in. Staff worked extended hours to fix broken heaters and frozen home exhausts. "Over the last week and a half, we've experienced an increase in calls obviously because of the cold," said Christina Wiersgalla, VP of operations for Wiersgalla Plumbing & Heating, Eau Claire, Wis., in a report by WQOW 18 News. Among the consequences of brutal winter weather are a greater appreciation of the work of HVAC companies and an opportunity to shine a spotlight on how they keep customers comfortable in their homes and businesses.

Lessons From The Past: The Value Of Ventilation In A Pandemic
Lessons From The Past: The Value Of Ventilation In A Pandemic

If history truly repeats itself, might we learn lessons from the past – even lessons about managing a novel coronavirus that upends our way of life and changes the world forever? The most commonly cited parallel to the COVID-19 pandemic is the Spanish flu pandemic of 1918. Both diseases are caused by viruses that had not been seen before. In both cases, no one had immunity to a highly infectious germ that was spread through respiratory droplets. Both outbreaks occurred in multiple waves over several years. Furthermore, in both cases, it became clear that ventilation, fresh air, open spaces and sunlight are useful factors in promoting good health. Fresh Air Movement During the time of the Spanish flu, there were signs posted in buses and throughout New York that advised: "Keep your bedroom windows open [to] prevent influenza, pneumonia [and] tuberculosis." There was even a national campaign known as the “Fresh Air Movement,” calling for people to be outside more, and urging greater ventilation indoors. The movement included a kind of traveling show that spread the word about the “national poison,” which was the result of people breathing stale air inside closed rooms. These concerns predated by decades our enthusiasm for “indoor air quality.” In became common after 1918 to position radiators providing steam heat under open windows to combine warmth with fresh air, even on the coldest of days.   The Open-Air Treatment of Pandemic Influenza It was also common practice by 1918 to place the sick outside in tents or in specially designed open wards But the advantages of fresh air go back even further, as described in a 2009 article in the American Journal of Public Health (AJPH) titled “The Open-Air Treatment of Pandemic Influenza.” During the 1918 pandemic, as today, many cities banned public assembly, closed schools, isolated those infected and mandated the wearing of face masks. It was also common practice by 1918 to place the sick outside in tents or in specially designed open wards, according to the AJPH article. The practice dates back to English physician John Coakley Lettsom (1744-1815), who was among the first advocates of the “open-air method.” The 1800s saw emergence of tuberculosis sanitoriums, which treated the lung disease with a combination of fresh air, gentle exercise in the open, nutrition, and a minimum of medicines. Lack of ventilation Spending time in well-ventilated houses in the country became seen as superior to patients being confined to warm, badly ventilated rooms to protect them from the supposedly harmful effects of cold air. Lack of ventilation forced patients to breathe foul air, contaminated with germs, over and over. Research later confirmed the importance of measures to prevent influenza virus from spreading through buildings. Improvements in air-handling equipment, portable filtration units, and introduction of physical barriers and other partitions or doors also provided protection. These lessons were clear long before the advent of the novel coronavirus that causes COVID-19. Their successful deployment during the pandemic have further supported their value. importance of HVAC Although the COVID-19 pandemic caught the world off-guard, there were plenty of historical precedents However, lockdowns during the pandemic have also tended to keep the population closed up in buildings, sometimes with less-than-adequate ventilation and access to fresh air. In retrospect, some of those decisions seem regrettable.  Although the COVID-19 pandemic caught the world off-guard, there were plenty of historical precedents. Copious research over the years supported the best approaches to stemming the spread of the virus, although it took time for historical insights to work their way into the general practice implemented in the current pandemic. There is also historical precedent for the importance of HVAC in the current pandemic. Ventilation and fresh air have become higher priorities, as has the HVAC market’s role in providing a safer indoor climate with minimal disease spread.

Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term
Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term

According to the latest statistics, Britain now has the highest daily COVID-19 death rate in the World, following an unfortunate record month of fatalities during January 2021. While UK Government is quick to defend this statistic, the fact remains that our country has been crippled by the SARS-CoV-2 virus, and now, as the population battles through yet another lockdown, it seems that the only 'way out’ is through widespread vaccination. impact of COVID-19 Though imperative, this strategy emphasizes the real challenge that Governments across the globe have faced in trying to control this virus; that reducing the transmission or ‘R rate’ is reliant on the behaviors of people. People who have lived with some form of restrictions for too long, people who are frustrated and tired of the impact COVID-19 has had on their businesses, and people who have simply lost trust in Government U-turns and last-minute decisions. What’s more, despite the best efforts of millions to comply with restrictions, the virus itself is one that is hard to contain, particularly with asymptomatic cases unknowingly passing it to others in key locations like supermarkets or via public transport. Regardless of this challenge, there is a solution that doesn’t rely on changing people’s behaviors, but rather in changing the environment in which people live, work and socialize. That solution is the implementation of Active Air Purification Technology. What Is Active Air Purification Technology? Active air purification technology is effective in every cubic cm of indoor air and surface space simultaneously and continuously Most air purification technologies are passive in that they can only have any effect when the air containing the pollutant comes into close proximity or passes through the unit. Examples of this are filtration, UV-C, and various PCO and ionization technologies. In other words, certain operational conditions must be met in order for them to be effective. Active air purification technology is not limited in this way and is effective in every cubic cm of indoor air and surface space simultaneously and continuously. This means pollutants, like viruses and bacteria, are instantly treated no matter where or when in the indoor space they are emitted or exposed which is significant in the context of COVID transmission. Whether required to mitigate microbials, allergens, or dangerous gases and VOCs, active technology offers a unique solution to destroying microbials instantly, offering a safer, cleaner, and more effective approach to air purification in domestic, commercial, and industrial environments. REME Air Purification Technology REME is an active air purification technology developed and patented 15 years ago by RGF Environmental Group, a COVID critical environmental innovator and manufacturer headquartered in the United States. Using no chemicals or harmful substances, REME comprises a number of known air purification technologies and sciences in one product. Its active capability works by producing and maintaining similar concentrations of hydrogen peroxide molecules as those found in the outdoor air and combines a process of bipolar ionization. When coming into contact with microbials, the naturally occurring ionized molecules break them down, destroy them and then revert them back to harmless water vapor and oxygen. The bipolar ionization effect causes other airborne particulates to agglomerate together causing them to become larger and heavier and drop out of their air or get captured in HVAC filters. RGF’s REME air purification technology produces 1 quadrillion ionized hydrogen peroxide molecules every second, quickly and safely killing any airborne virus or bacteria, including SARS-CoV-2 on a continuous basis. Its effectiveness has been verified by nationally accredited independent labs and testing bodies in the US and by other governments in numerous tests over two decades, with results also confirming a 99%+ inactivation for highly infectious viruses and bacteria, such as H1N1 or ‘Swine Flu’, SARS, Norovirus, MRSA and Bird Flu, just to name a few. Vaccinate Environments And People Air purification technology drives down the R rate for good by effectively vaccinating the air in which the virus circulates In understanding exactly how active air purification technology works and its capability to successfully destroy COVID-19, it’s clear that it presents an opportunity to drive down the R rate for good by effectively vaccinating the air in which the virus circulates. This strategy is already working its way through the United States with leading brands, like restaurant chain TGI Friday, installing active air purification technology across all establishments and has also caught the attention of renowned insurance market, Lloyds of London, which has installed the technology across all UK offices to ensure its 5,000 plus staff members can return safely to work. Improving the environment For nearly 12 months the world has been coping with COVID-19, describing it as an ‘unprecedented period’ where there is no clear end. However, in vaccinating both people and the environment in which it lives, the virus can be controlled once and for all. Ultimately, with a crippled economy, in excess of 100,000 deaths and a generation of children impacted by the closure of schools, now is the time to accelerate response and change the environments in which the virus circulates, not just the people. 

vfd