ASHRAE, a global society advancing human well-being through sustainable technology for the built environment, announced a move to its new global headquarters, located at 180 Technology Parkway, Peachtree Corners, Georgia.

The Society began renovations in January 2020 on an existing 66,700 ft building, originally built in 1978, on 11 acres of land. Located 10 miles north of its previous headquarters building, ASHRAE joins other innovation and sustainability-focused organizations based in the popular Technology Parkway corridor.

Net-Zero energy buildings

ASHRAE’s new global headquarters is a prime example of how we are helping to pioneer a movement that many expect will ultimately make net-zero energy the ‘new norm’ in sustainable design and construction,” said ASHRAE Building Ad Hoc Committee Chair Ginger Scoggins, P.E. “Although new construction of net-zero energy buildings make a lot of headlines, reuse of existing structures is a basic tenet of sustainability – the energy performance of existing buildings must be addressed to substantially impact the 40% of primary energy consumed by buildings.”

ASHRAE’s goal for this project was to renovate a three-story 1970’s era, cheap energy period building into a high-performing net-zero-ready facility in a cost-effective way that can be replicated in the built environment industry,” said Technical Advisory Subcommittee Chair Tim McGinn, P.E. The photovoltaic (PV) system design is currently in progress. The building will be on its way to fully net-zero energy by March 2021 upon the completion of the PV system installation.

Digitally connected solutions

The headquarters building incorporates several digitally connected solutions such as remote monitoring"

Focusing on the Society’s 2020-21 theme, “The ASHRAE Digital Lighthouse and Industry 4.0, the headquarters building incorporates several digitally connected solutions such as remote monitoring and analysis of building performance, with online dashboarding for transparency and advanced Building Automation System (BAS) integration with other systems, such as ASHRAE’s meeting reservations systems.”

Other solutions include a digital twin and Building Information Model (BIM), innovative mechanical systems visible through open ceiling around radiant panel clouds and advanced conferencing systems designed to serve as a ‘digital lighthouse’ teaching resource.

ASHRAE’s first-of-its-kind headquarters building was designed as a living showcase of what's possible through technology integration to increase efficiency, protect people and property, and enhance the occupant experience,” said 2020-21 ASHRAE President Charles E. Gulledge III, P.E. “In addition to supporting ASHRAE’s technical standards, innovative product integrations from our generous donors also provide a scalable and repeatable model for a net-zero energy building design.”

Fresh air distribution system

Examples of technical features include:

  • Radiant ceiling panel system: This is used for heating and cooling & dedicated outdoor air system for outdoor air ventilation with enthalpy heat recovery.
  • Overhead fresh air distribution system augmented with reversible ceiling fans in the open office areas and displacement distribution in the learning center.
  • Six water source-heat pumps (WSHPs): There are four on basement level and two on upper level atrium that will be used to condition these spaces.
  • Demand Control Ventilation (DCV): This will be used for high occupancy spaces in the meeting and learning center. Air distribution is constant volume in office areas and provided by fabric duct, reducing diffuser count and duct branches.
  • Modeling Energy Use Intensity of 17 kBtu/sf/yr.
  • On-site electric vehicle charging stations available for guests and staff.
  • Roof-top and ground mounted photovoltaic solar energy system planned for installation March 2021.
  • 18 new skylights and reconfigured window/wall ratio.
  • Useful daylight illuminance (>300 lux) at the work plane Window Wall Ratio (WWR) 79.9% Existing – New WWR east/west 33.5% - north/south – 41.9%.

Prior to the COVID-19 pandemic, ASHRAE had already planned to provide 30% more outside air to the building than the required minimum ventilation rates from ASHRAE Standard 62.1 - Ventilation for Acceptable Indoor Air Quality and will implement other applicable guidance that has been developed by the ASHRAE Epidemic Task Force (ETF) for commercial office buildings.

Building occupant health

The building is located in a forest setting, close to hotels, restaurants and walking trails

The building is located in a forest setting, close to hotels, restaurants and walking trails. A large deck overlooking a lake adjacent to meeting rooms can be fully enjoyed on sunny days. ASHRAE’s headquarters is 12 minutes and 6.2 miles from the Doraville MARTA station for easy access to Atlanta Hartsfield International Airport. The Society’s approximately 110-person staff officially moved into the building at the beginning October.

This move represents another significant milestone for ASHRAE,” said ASHRAE Executive Vice President Jeff Littleton. “In addition to showing our commitment to building occupant health and comfort, our new headquarters building will enable us to provide industry-leading support and service to our global volunteers, while driving innovation that will push our goal of sustainability in action forward.”

Successful building campaign

A team of ASHRAE volunteers led a highly successful building campaign to garner support for the renovation project. Thirty-one corporate donors committed more than $9.7 million in monetary support and gifts of equipment and services.

ASHRAE thanks the following industry partners for their high-level support of the new global headquarters renovation project: NIBE, Cisco, Arkema, Daikin, Price Industries, Belimo, ClimateMaster, ClimaCool, Bell & Gossett, Big Ass Fans, Victaulic, Uponor, Mitsubishi Electric Trane, NTT and PlaceOS. Donors to the building campaign will be listed online and recognized in a special new headquarters commemorative magazine to be published in January 2021.

Sustainable built environment

ASHRAE’s new global headquarters is an example of an effective built environment"

Additionally, ASHRAE members have given over $500,000 to date. In total, ASHRAE has received over $10.2 million from generous stakeholders, making a strong statement about their commitment to ASHRAE’s mission and to a shared vision of a healthy and sustainable built environment for all.

ASHRAE’s new global headquarters is an example of an effective built environment that fully considers the importance of effective operations by installing the systems and equipment in a manner that facilitates operation and maintenance,” said 2019-20 ASHRAE Presidential Member and Building Ad Hoc Committee Member Darryl K. Boyce, P.Eng.

We are grateful to our donors for their generous support and partnership. It is this support that not only shows our donors’ alignment with ASHRAE’s sustainability goals, but helps us to address the challenges of designing and operate buildings in a technology driven environment.”

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

In case you missed it

Lessons From The Past: The Value Of Ventilation In A Pandemic
Lessons From The Past: The Value Of Ventilation In A Pandemic

If history truly repeats itself, might we learn lessons from the past – even lessons about managing a novel coronavirus that upends our way of life and changes the world forever? The most commonly cited parallel to the COVID-19 pandemic is the Spanish flu pandemic of 1918. Both diseases are caused by viruses that had not been seen before. In both cases, no one had immunity to a highly infectious germ that was spread through respiratory droplets. Both outbreaks occurred in multiple waves over several years. Furthermore, in both cases, it became clear that ventilation, fresh air, open spaces and sunlight are useful factors in promoting good health. Fresh Air Movement During the time of the Spanish flu, there were signs posted in buses and throughout New York that advised: "Keep your bedroom windows open [to] prevent influenza, pneumonia [and] tuberculosis." There was even a national campaign known as the “Fresh Air Movement,” calling for people to be outside more, and urging greater ventilation indoors. The movement included a kind of traveling show that spread the word about the “national poison,” which was the result of people breathing stale air inside closed rooms. These concerns predated by decades our enthusiasm for “indoor air quality.” In became common after 1918 to position radiators providing steam heat under open windows to combine warmth with fresh air, even on the coldest of days.   The Open-Air Treatment of Pandemic Influenza It was also common practice by 1918 to place the sick outside in tents or in specially designed open wards But the advantages of fresh air go back even further, as described in a 2009 article in the American Journal of Public Health (AJPH) titled “The Open-Air Treatment of Pandemic Influenza.” During the 1918 pandemic, as today, many cities banned public assembly, closed schools, isolated those infected and mandated the wearing of face masks. It was also common practice by 1918 to place the sick outside in tents or in specially designed open wards, according to the AJPH article. The practice dates back to English physician John Coakley Lettsom (1744-1815), who was among the first advocates of the “open-air method.” The 1800s saw emergence of tuberculosis sanitoriums, which treated the lung disease with a combination of fresh air, gentle exercise in the open, nutrition, and a minimum of medicines. Lack of ventilation Spending time in well-ventilated houses in the country became seen as superior to patients being confined to warm, badly ventilated rooms to protect them from the supposedly harmful effects of cold air. Lack of ventilation forced patients to breathe foul air, contaminated with germs, over and over. Research later confirmed the importance of measures to prevent influenza virus from spreading through buildings. Improvements in air-handling equipment, portable filtration units, and introduction of physical barriers and other partitions or doors also provided protection. These lessons were clear long before the advent of the novel coronavirus that causes COVID-19. Their successful deployment during the pandemic have further supported their value. importance of HVAC Although the COVID-19 pandemic caught the world off-guard, there were plenty of historical precedents However, lockdowns during the pandemic have also tended to keep the population closed up in buildings, sometimes with less-than-adequate ventilation and access to fresh air. In retrospect, some of those decisions seem regrettable.  Although the COVID-19 pandemic caught the world off-guard, there were plenty of historical precedents. Copious research over the years supported the best approaches to stemming the spread of the virus, although it took time for historical insights to work their way into the general practice implemented in the current pandemic. There is also historical precedent for the importance of HVAC in the current pandemic. Ventilation and fresh air have become higher priorities, as has the HVAC market’s role in providing a safer indoor climate with minimal disease spread.

Pandemic Spotlights Need To Balance Costs While Improving Air Quality In Schools
Pandemic Spotlights Need To Balance Costs While Improving Air Quality In Schools

Attitudes about indoor air quality need to change, especially given the current pandemic that forces people to spend most of their time indoors. But addressing the pandemic through increased ventilation and better indoor air quality can be expensive. For example, the Los Angeles Unified School District, the second-largest in the nation, has spent $6 million on HVAC upgrades and new air filters in response to the pandemic and expects to pay about $1.7 million a month for ongoing inspections and filter replacements. Updating & Improving HVAC Systems Updating HVAC systems to minimize virus spread has been an expensive proposition all around. Some school districts in California report the costs are insurmountable. Sometimes seeking to replace or update an HVAC system opens a can of worms: Electrical systems must be rewired, asbestos must be removed, and/or an expensive roof needs to be replaced. Schools in low-income areas are especially likely to be in poor condition, and unable to afford improvements. Some school districts have used money from the federal CARES Act – a $2 trillion federal economic package passed in March – to make ventilation improvements. Hope remains that additional state and/or federal money will be available, but funding is still likely to be inadequate. Airborne Transmission Study showed that some classrooms had air change rates below 0.5 changes per hour The airborne transmission was initially underplayed as a means of spreading the novel coronavirus. There was more emphasis on the dangers of touch during the early days of the pandemic. However, the airborne (aerosol) spread is now believed to make up about 75% of transmissions. A group of 239 scientists from around the world advocated more action to address aerosol spread in a July 2020 open letter to the World Health Organization (WHO). The concern is a global challenge. For example, a survey of 20 classrooms in the United Kingdom, carried out by National Air Quality Testing Services (NAQTS), revealed very low air change rates that could increase the risk of virus transmission. The study showed that some classrooms had air change rates below 0.5 changes per hour (3 to 5 changes per hour would be desirable). Even small increases in flow rate could reduce the risk of infection significantly. Raising airflows from zero to 100 cu m/hour cuts the risk by up to a third, according to NAQTS. Fresh Air Ventilation & Filtration The Scientific Advisory Group for Emergencies (SAGE) advised the UK Government last fall of a need to ensure undisrupted education for children of all ages. A critical part of keeping children in school is clear guidance and support packages, including better ventilation and air filtration, particularly through winter. The German government advises schools to open their windows for at least five minutes every hour Other countries can learn a lot about the value of opening windows to allow in more fresh air from the Germans. For years, Germans have habitually opened their windows twice a day, even in winter. In fact, “lüften,” or airing a room, is among the cheapest and most effective ways of decreasing the spread of the coronavirus. The German government advises schools to open their windows for at least five minutes every hour; for example, when classes are changing. Improving Indoor Air Quality Airing of rooms is a likely factor in the lower number of coronavirus cases reported in Germany compared to, say, the United Kingdom. In the end, improving indoor air quality involves some combination of letting in more fresh air, upgrading air filtration systems, and installing technologies such as UV light to kill pathogens. However, implementing these measures only mitigates the likelihood of contracting COVID-19. Some risk remains.

What Technologies And Trends Will Define HVAC In 2021?
What Technologies And Trends Will Define HVAC In 2021?

The pandemic of 2020 presented unique challenges to the HVAC market, and in many instances, responding to those challenges relied on technical innovation. It’s safe to say that the pandemic accelerated several technology trends, redirected others, and overall raised the stakes in the industry’s ongoing challenge to meet customer needs across a wide spectrum. But what comes now? We asked our Expert Panel Roundtable to weigh in on this question: What technologies and trends will define the HVAC industry in 2021?

vfd