Pete Mills, Commercial Technical Operations Manager at Bosch Commercial & Industrial outlines how cities are using heat networks to achieve UK carbon emission targets.

Heat networks, or district heating, are becoming an ever-greater part of our industry’s involvement in larger scale schemes. The ability to help the decarbonization of heat both now and in the future has made them an attractive solution to the new-build sector, as well as those undergoing deep renovation works.

Net zero 2050

The UK’s net zero 2050 target may seem like a long way off. But steps need to be made now in order to reach this, something that our leading cities have recognized.

Many have set their own carbon targets to ensure they stay on track. This is why heat networks’ ability to provide efficient heat and hot water to multiple buildings (and as the name suggests, whole districts) is a particular reason why many cities up and down the country are turning to them as a solution.

What are heat networks?

Generally, heat networks are defined as a system of supply pipes with a centralized heat generator (Energy Centre) that serves multiple domestic or non-domestic dwellings. These are usually in different buildings, but sometimes within a single large building like an apartment block or a university campus.District heating is often used to describe larger scale systems

District heating is often used to describe larger scale systems of this sort, where there will be many buildings connected over a larger geographic area. In these systems, although the heat is provided ‘off-dwelling’, it is also common to have more than one energy centre.

The principle is that energy for heating (and sometimes cooling) is supplied through the system of pipes, with each individual user being metered for the energy they use.

Minimize pipe lengths

Heat networks offer a number of advantages but are best suited to areas where there is high heat density, that is to say where there are multiple ‘households’ close together in order to minimize the length of pipes within the network.

One of the key advantages for heat networks is their adaptability to use any form of heat generation. A key advantage from an environmental perspective is that they make use of waste heat, from sources such as electricity generation, waste incineration and industry.

Heat networks are defined as a system of supply pipes with a centralized heat generator that serves multiple domestic or non-domestic dwellings

The scale of the combined heat requirements of all these dwellings also helps the inclusion of renewable energy sources, which may be more difficult and costly to achieve at the individual dwelling level.

Overall, their flexibility to use whatever heat source is available, makes them easier to decarbonize in the future.
Other key benefits for Local Authorities and Housing Associations have been the elimination of individual gas appliances within dwellings. This has significant cost savings reductions for Local Authorities and Housing Associations where gas landlord checks are eliminated, along with the issues associated with access.

City developments

Today City Councils and developers are opting for heat networks to provide the heating and hot water for new redevelopment projects.

The largest of these is the ambitious Leeds Heat Network, which once completed is set to be one of the UK’s largest new heat networks, connecting 1,983 council homes and numerous businesses in Leeds. The first scheme under the City Region’s District Heating program, the green initiative looks to reduce carbon emissions for the area as well as energy bills for the residents living there.The green initiative looks to reduce carbon emissions for the area

Even more innovative is how the network will connect to the Leeds Recycling and Energy Recovery Facility, which burns black bin bag waste to generate heat. In theory this would make the network fully sustainable.

There will be back-up support from efficient Bosch Commercial & Industrial boilers, which will only be switched on when required, say the colder months where the need for heat is higher.

Climate change targets

An hour’s drive away from Leeds is the city with one of the most ambitious climate targets in the UK. Manchester intends to be carbon-neutral, climate resilient and zero waste by 2038 – 12 years before the overall UK net zero 2050 target needs to be hit.
To help achieve its ambitions, work has been taking place on the Manchester Civic Quarter Heat Network (CQHN).

Manchester hasshown the versatility of heat networks due to the number of commercial buildings it will support

The project will generate low-carbon power, heat and hot water for initially six council buildings and some residential properties with the possibility for the network to grow and connect further buildings across the city centre.

Some see district heating as a solution solely for residential purposes, however Manchester have shown the versatility of heat networks due to the number of commercial buildings it will support.

The project itself has also given Manchester a new landmark, the impressive ‘Tower of Light’, which incorporates the five flues from the technology powering the network. This beacon not only represents the city’s commitment to reducing its carbon footprint but also the innovative nature of district heating.

Heating Battersea Power Station

The final example lies in the Capital and may be one of the most famous developments in the UK at the moment. Battersea Power Station is not only one of the most iconic landmarks in London, but also the center piece of one of the most high-profile, large scale mixed-use redevelopment projects ever undertaken in the Capital.Battersea Power Station is a high-profile, large scale mixed-use redevelopment project

The project involves the development of a district heating and cooling network, with a two-level underground energy centre – one of the largest of its kind. This complex heat, cooling and electricity network will continue to expand as the project continues to undergo its development stages.

Looking ahead

These are just a few examples of cities taking advantage of district heating and its many benefits, but near all cities in the UK have multiple heat network projects underway. Like with most innovations, smaller urban areas should then follow suit.

The importance of district heating will no doubt become more and more prominent. Its ability to power whole areas and multiple buildings can already help efficiency levels, however its potential may be even greater in the future.

One key energy transformation that is looking more and more likely is the decarbonization of the gas grid to hydrogen blends and ultimately 100% hydrogen. If these can be utilized in heat networks then the benefits will definitely put us and UK cities in a good place as we continue our journey towards net zero.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

Pete Mills Commercial Technical Operations Manager, Bosch Thermotechnology

In case you missed it

The Impact Of Millennials And Other HVAC Industry Trends
The Impact Of Millennials And Other HVAC Industry Trends

Millennials have been shaped by their experiences growing up with technology and by their heightened awareness of the environment. These facets of a consumer market dominated by millennials will guide the future of the HVAC market over the next several years. Each generation reshapes markets in their own image. In the case of millennials, trends and behaviors are influencing how companies design new solutions, including those in the world of HVAC. Sustainable solutions and personalized experiences Millennials place a premium on sustainable solutions that reduce their environmental impact Millennials place a premium on sustainable solutions that reduce their environmental impact. Millennials also want more personalized and convenient experiences, and they value enhanced customer service support. New systems designed with a personalized and ecological mindset are amplifying efficiency and convenience and giving unprecedented control to create a truly connected home for technophilic millennials. Future HVAC products to cater to millennials The challenges of catering to millennials is one of the trends LG Electronics has listed among those likely to impact the HVAC industry in the months and years ahead. The trends are directly guiding LG’s product mix, including WiFi-enabled indoor units and LG’s Smart ThinQ application, which put the ability to control a home’s comfort system at the consumer’s fingertips. Here are some other trends to watch, listed by LG Electronics, when looking ahead to 2021 and beyond: Greener solutions on the horizon: Beyond appealing to millennial sensitivities, green solutions have a long list of their own advantages. Industry providers are responding by creating more sustainable and efficient products to enable customers to reduce their carbon footprints. LG Inverter air conditioning systems are designed to minimize efficiency losses, provide sustainable energy savings and contribute to lower lifecycle costs. More efficiency and reduced costs: Geothermal heat pumps have quickly proven themselves to be an alternative energy source, offering both warming and cooling capabilities. They are a highly effective and renewable energy source that can transfer heat from the ground to cool and heat buildings. Minimizing greenhouse gas emissions: Connecting HVAC to the electrical grid highlights the importance of reducing greenhouse gas emissions. Air-to-water heat pumps and other solutions can generate cooling and heating from one unit, thus furthering the transition from natural gas, fuel oil or coal. Fulfilling the need for new employees: The next generation of HVAC engineers and technicians requires training programs. LG Air Conditioning Academies provide training and skills programs around the world to empower the new generation of HVAC professionals. The impact of COVID-19: The pandemic has created a need for greater safety precautions within the HVAC industry. Remote working trends and additional precautions will likely continue to impact the industry even post-pandemic. LG HVAC systems are evolving to better aid the road to recovery and to prepare for the new normal with optimal solutions for the ever-changing challenges.

Elon Musk’s Pet Project: Creating A ‘Way Better’ HVAC System In 2021
Elon Musk’s Pet Project: Creating A ‘Way Better’ HVAC System In 2021

Elon Musk has proclaimed that HVAC is his ‘pet project’ and has even suggested a timeline: ‘Maybe we can start working on that.’ As a high-profile business magnate, industrial designer and engineer, Musk is CEO of automobile company Tesla, whose goal is to accelerate the use of sustainable energy. Tesla is on the cutting edge of technologies that can transform how we use energy, and Musk believes the benefit of that technology will translate well into home HVAC systems. Heat pump technology “You can make a way-better home HVAC system that is really quiet and super-efficient and has a way-better filter for particles,” Musk said at a recent Tesla presentation. “It works very reliably.” A feature would be use of a high-efficiency particulate air (HEPA) filter. Musk’s vision is to adapt heat pump technology the company uses for its Model Y automobile to home HVAC systems Musk’s vision is to adapt heat pump technology the company uses for its Model Y automobile to home HVAC systems. “It’s tiny. It’s efficient and designed to last 15 years. It operates in all conditions from the coldest winter to the hottest summer,” says Musk. The small units can be ‘stacked’ to provide a super-efficient and scalable home HVAC system, says Musk. A lot of work has already been done for a ‘kick-ass’ system, he adds. Cheap solar power A further benefit would be the ability of home systems to communicate with Tesla cars so that the home HVAC system ‘knows’ when residents are coming home and can dial in the settings for heating and cooling to make the house comfortable when they arrive. Because HVAC systems are such big users of energy, it makes sense that Tesla would target the industry as a means of promoting greater use of sustainable energy. Musk says that wind and solar comprise 76% of new electricity in the United States this year, and Tesla offers the cheapest solar power in the U.S. – only $1.49 per watt for a solar system installed on an existing roof. As a technology disruptor, however, Musk mentions that scaling the manufacture of products is 10 times more difficult than creating a prototype – suggesting a probable delay before any HVAC product that Tesla introduces would become widely available. From Electric Vehicles To HVAC When Tesla entered the electric vehicle market, it helped to jump-start investment in electric vehicles even among traditional automakers. Might the visionary company have a similar impact on the mature HVAC industry? Specifically, would Tesla’s delivery of a reliable and efficient product spur faster innovation for HVAC in general?? Efficiency is one of the main competitive factors among HVAC equipment suppliers" Senior Capital Equipment Analyst Kyle Peters of The Freedonia Group thinks so: “Efficiency is one of the main competitive factors among HVAC equipment suppliers, and it’s no surprise that most have embraced technological change to make their systems more efficient and appealing to customers.” Tesla’s entry into the market would accelerate that trend, says Peters.  product development “While existing manufacturers are already developing the next generation of filtration technologies to maintain their hold on the industry, its considerable growth potential is likely to attract new industry participants like Tesla,” says Gleb Mutko, another Freedonia analyst. In addition, Musk’s entry into the HVAC market will likely increase investor interest in HVAC and filtration systems and provide impetus for additional product development. Based on the innovation and investment we are seeing in the HVAC market already, it’s a sure bet the industry will look very different in the next decade. Increasingly, it also appears that Elon Musk will be playing a part in that transformation.

Underfloor Air Conditioning: Adapting Office Spaces
Underfloor Air Conditioning: Adapting Office Spaces

Demand for underfloor air conditioning systems, which are far more flexible and adaptable than ceiling-based systems, has risen as developers and landlords scramble to reconfigure office spaces in the wake of the coronavirus pandemic. Experts have predicted a 50% reduction in office occupancy, as millions embrace working from home. What is underfloor air conditioning? A zonal underfloor air conditioning system makes use of the raised floor void as a plenum for the distribution of air. Supply and return channels are created under the floor, and zone units serving areas of up to 300m2 are suitably located throughout the office space to generate conditioned air locally to serve the needs of the space. Underfloor air conditioning goes further than displacement systems, offering full function control of the indoor environment Individually controlled fan terminals of either recessed or floor standing configuration are let into the floor over supply plena. These terminals introduce air into the space above in accordance with the dictates of their own on-board temperature sensors and controls system. Users can adjust fan speed and set point temperature individually. Return air grilles are positioned in the floor over return plena. The whole system is controlled by means of the electronic management system controlling the operation of the zone units and the associated fan terminals permitting centralized monitoring and control. Underfloor systems are inherently compartmentalised and offer highly effective solutions in multi-tenant areas and other environmentally challenging applications.  Many low-height refurbished spaces suffer from high levels of user complaint due mainly to draft from ceiling mounted outlets positioned too close to the user. The changing work environment At AET Flexible Space, we have seen increased demand, both from existing clients looking to reconfigure their office space, and new clients looking for a flexible air conditioning which can help to future-proof their office. A huge benefit of an underfloor air conditioning system is that they are inherently flexible, and can be changed to suit new room layouts within minutes. Our unique Fantile™ units are installed to sit in-line with the finished floor, and can be easily repositioned at any time without the need for the significant, and costly, building works usually involved in repositioning ceiling-based ductwork. A huge benefit of an underfloor air conditioning system is that they are inherently flexible We are already seeing that COVID-19 has accelerated the trend towards more flexible, future-proofed, and sustainable office space. We have been seeing an increase in demand for our underfloor systems for some time, but the coronavirus lockdown has certainly made more people consider the end-users of this office space, and how they can be best served Workplace wellness is also an increasing concern, and may be a key element for encouraging workers back into the office. The Workplace Wellness Study conducted by Future Workforce found that workplace environment is more important to employee satisfaction, engagement and productivity than most organizations realize. 67% of employees said they are more productive in workplaces that promote a healthy environment. One-third said they lose at least an hour of productivity each day due to office environments that don’t support their daily health. Beyond the inherent flexibility of underfloor air conditioning systems, they also offer high levels of energy efficiency, sustainability, and air quality. As there is no ductwork with an underfloor system, individual zones operate at very low-pressure encouraging energy efficiency. AET’s systems have helped attract LEED and BREEAM and other Green Building points, and can provide up to 30% savings in energy costs and a 29% reduction in C02 emissions when compared to ceiling systems. Cost savings Cost savings are also a key concern for everyone in the post-COVID world, and the flexibility and economy of an underfloor system across the lifetime of a building is increasingly attractive. The British Council for Offices (BCO) indicates that underfloor air conditioning can offer dramatic savings in overall cost, but it requires a co-ordinated team approach to achieve the optimum result. The flexibility and economy of an underfloor system across the lifetime of a building is increasingly attractive In the past the only way to reduce ceiling-based HVAC costs has been to reduce the specification and downsize plant, or reduce flexibility by increasing the size of terminal outlets and reducing numbers. However, these solutions often result in increased complaints of end-users about draughts and noise, which necessitates a costly and environmentally unfriendly re-design. Ceiling-based systems also demand service and maintenance from within the work space, from the simple task of changing filters in fan-coils or cassettes, to more complicated reconfigurations of pipework and ducts to suit a new layout below. Not only do these refits mean significant hidden cost, but they also cause disruption, and have a high risk of damage from condensate leakage. Construction Considerations In order to maximize the benefits of underfloor air conditioning, it must be introduced into the overall design philosophy at an early stage. When incorporated into the overall building design, savings can be made to curtain wall costs, all other height-related savings such as elevator shafts, columns, stairwells, riser shafts, and vertical services such as mains pipe-work and electrical risers. The Swedish National Pension Fund has reported overall cost savings of between 5% and 7% in buildings using underfloor air conditioning. In order to maximize the benefits of underfloor air conditioning, it must be introduced into the overall design Good quality underfloor air conditioning systems are similar in price to conventional good quality fan coil systems, but underfloor systems also reduce the cost of construction and offer tax advantages. The average office building costs in UK are in the region of £1000 to £2000 per square meter. Therefore, a 5% saving in overall cost could range from £50 to £100 per square meter. The average cost of any AC system is in the region of £120 to £200 per square meter, and so an overall saving in construction equates to something in the region of 50% of the AC system. As we move forward into 2021 and beyond, commercial construction is going to require sustainable and cost-effective design. With so many benefits, it is clear why so many in the construction industry are now turning to underfloor air conditioning solutions.