Download PDF version

The COVID-19 pandemic has changed the way the world lives, escalating the need to prioritize health and safety where we live, work, learn and play. As organizations around the world respond to the pandemic, the International WELL Building Institute (IWBI) has leveraged its expertise to help.

Impact of building surroundings

IWBI is a public benefit corporation focused on deploying “people-first places” to advance a global culture of health. The community has adopted the WELL Building Standard, which is the anchor in an ecosystem of certifications and ratings focused on creating and benchmarking health and well-being in built environments.

IWBI understands that companies have realized the importance of feeling safe inside and the importance of mental health — and how building surroundings impact that.

WELL Building Standard (WELL)

IWBI is focused on the ways that buildings, and organizations, can improve comfort and enhance health and well-being

IWBI is focused on the ways that buildings, communities, and organizations, and everything in them, can improve comfort, drive better choices and generally enhance health and well-being. The work is global, covering 2.5 billion square feet of real estate in nearly 100 countries as of June 2021.

The WELL Building Standard (WELL) is a vehicle for buildings and organizations to deliver more thoughtful and intentional places that enhance human health and well-being, according to IWBI.

It’s the standard for buildings, interior places, and communities seeking to implement, validate and measure features that support and advance human health and well-being, leading to official certification.

Measures to become WELL Certified

A building becomes WELL Certified (WELL Building) following the adoption of features from the WELL Building Standard, achieving a threshold based on measures that are validated by a third party.  These measures include building performance and their impact on people’s health and well-being.

HVAC is a key element of WELL buildings. The primary purpose of HVAC systems is usually to improve the environmental conditions for the building users. Introducing outdoor air combats the buildup of carbon dioxide and volatile organic compounds, which at high levels can lead to sick building syndrome. Particle filters can remove much of the pollution from traffic or forest fires before it is introduced indoors.

Problems with HVAC

But HVAC systems can create their own problems. For example, cooling coils and drain pans can become a habitat for mold growth if not properly maintained.

The WELL Building Standard addresses issues related to air quality and HVAC systems with a holistic approach, with adaptable strategies covering air, thermal comfort, and material.

WELL Certification

The WELL Building Standard includes strategies in 10 WELL Concept areas, from HVAC systems to architectural details 

The WELL Building Standard is a global framework for creating and certifying places that advance health and well-being. It includes strategies in 10 WELL Concept areas, covering topics ranging from HVAC systems to architectural details to human resource programs.

WELL Certification is granted following a third-party review that these requirements have been met in a process that involves both submissions of documentation and on-site testing and inspection.

Organizations can also enroll groups of projects in the WELL Portfolio, enabling them to document and celebrate their incremental progress in WELL feature achievement and employ the strategies at scale.

Professional engagement

Stakeholder engagement, including engagement by professionals in the HVAC space, has always been a key part of the development of WELL.

For example, there was a 6-month public comment period to solicit feedback on the WELL v2 pilot before its graduation in 2020. Also, just before completing WELL v2, a Task Force on COVID-19 and Other Respiratory Diseases sought to identify any additions that could be added in light of the pandemic.

There is also a network of more than 230 experts who participate in 14 IWBI advisories. Within this, there is an advisory for each of the 10 WELL Concepts, including 35 advisors in the Air and Thermal Comfort advisories.


The most important challenge IWBI faces is the same one facing all others: Recovery from the COVID-19 pandemic and the ticking clock of climate change — and all that goes along with it.

As we continue to combat COVID-19, we recognize that feeling comfortable and safe inside is more important than ever,” says Nathan Stodola, Chief Engineer at the International WELL Building Institute (IWBI).

The pandemic has taught us the importance of air quality in preventing the spread of disease. This is a critical moment to keep the public informed on the latest scientific findings and best practices.”

Adding a human element to buildings

IWBI is working toward a future where buildings are designed with people — the human element — in mind"

We have also learned the value and importance of mental health, and how much employees want their employers to know that,” Stodola adds.

And IWBI is working toward a future where buildings are designed with people — the human element — in mind. There is an interconnectedness to all of this, and that’s how IWBI is working to serve the needs of the public.”

WELL Health-Safety Rating

In response to a rising need in the wake of COVID-19, IWBI introduced the WELL Health-Safety Rating for Facility Operations and Management in June 2020, a third-party validated tool designed to build confidence in the safety of a building.

The WELL Health-Safety Rating provides an efficient and effective opportunity to guide, validate, recognize and scale the efforts of owners and operators on critical health and safety issues.

Strategies undertaken

Specific to the HVAC arena, many strategies that have come to light in the pandemic have been part of WELL since its inception, including sufficient ventilation rates, operable windows, awareness of mental health needs, and proper ergonomic design of workstations.

But the Task Force on COVID-19 and Other Respiratory Infections also identified changes that have been implemented in the program, such as treating or eliminating recirculated ventilation air or allowing virtual training courses rather than requiring in-person classes.

Most strategies in WELL are “evergreen:” They will continue to have benefits to building users even after the risk of COVID-19 diminishes, says IWBI. 

Programs and resources

IWBI offers several education programs and resources, as well as professional credential courses, for people in the architecture, engineering, construction, and design industries--and beyond.

IWBI offers a training program for schools to educate people on how to maintain a healthy and safe school environment

The WELL Accredited Professional (AP) program is designed for those looking to gain skills to help inform WELL projects to further advance human health and well-being in buildings and communities

IWBI also offers a training program for schools to educate people on how to maintain a healthy and safe school environment.

Focus on health and well-being

WELL buildings are not just about design and construction, but also about how to operate space and create policies that change people’s behavior for advanced health and well-being, says IWBI.

For instance, the Nourishment Concept is about providing access to healthy food, and biophilia features can help improve people’s mental health.

Caters to all markets and budgets

Additionally, people tend to think that WELL buildings are expensive or only for the luxury market. WELL applies to all types of places and can be implemented with various budget sizes based on individual projects’ health and well-being needs.

Air and Thermal Comfort concepts

The HVAC requirements in WELL are dependent on the facilities team in addition to the design team. People need buildings to provide places to live and work, and buildings need people to care for their systems.

There are several features in the Air and Thermal Comfort concepts related to the ongoing measurement of conditions within the space and maintenance of the ventilation system.

Share with LinkedIn Share with Twitter Share with Facebook Share with Facebook
Download PDF version Download PDF version

Author profile

In case you missed it

Using Near Field Communication (NFC) To Control HVAC Systems
Using Near Field Communication (NFC) To Control HVAC Systems

Interfacing with HVAC products is increasingly complex. The tiny 1-inch LCD display included on systems does not lend itself to complicated functions. Keeping the HVAC user interface simple limits control options to on/off, mode change or choosing a temperature. Thermostat controls company COTHERM has developed a smartphone app that can be used to control complex functions such as product settings during installation, programming or providing technical information about an HVAC product. Near field communication (NFC) relays information from the smartphone app to the HVAC equipment. Conventional HVAC equipment “NFC technology can be leveraged by heating, ventilation and air conditioning (HVAC) manufacturers so that installers can adjust the settings for radiators, as well as water or space heaters, via a mobile phone,” says Alain Maillard, Marketing Director of COTHERM. NFC is a contactless technology that enables transfer of short messages between a smartphone and an object. The technology is widely used and is already popular for uses such as contactless payment The technology is widely used and is already popular for uses such as contactless payment, access control and transportation. The large color screen display of a smartphone and the familiarity of app usage provides a strong tool for user interface and is much more user-friendly than conventional LED or LCD displays with keypads that commonly equip conventional HVAC equipment. This is particularly evident for advanced settings that need a lot of menu navigation like programming. Using NFC technology NFC provides a remote user interface using a smartphone to facilitate the configuration or setting of the product. In effect, the smartphone becomes the user interface of the product, and there is no need to use a complex display with a keyboard. The approach also does not require complex IT installation or pairing as would be required with other technologies like Bluetooth or Wifi. Because communication is based on proximity, data exchange is safe, and you do not need a password or login to connect. The Electric Radiator is COTHERM’s first equipment to use NFC technology, and the first market introduction is in France. The first company to introduce the technology is ‘Univ’R Chauffage’ for the 2021 winter season. For an installer, simplicity is key. Permanent communication link The actual appliance is simplified to include only the most commonly used functions The NFC approach provides time savings for installation as it does not require a login/password of a local network. And it is error free: An app can have a pre-defined setting package that is impossible using a native LCD+ keyboard on traditional equipment. For the user, the actual appliance is simplified to include only the most commonly used functions. There is no pairing or setting, ensuring simplicity. And the system is hacker-free as it requires a proximity exchange and works without the cloud. Data exchange is only activated while the smartphone is close to the radiator; there is no need for a permanent communication link. As a consequence, there are no waves pollution and no energy consumption that may be due to maintaining permanent communication. For appliance manufacturers, the cost-effective solution is innovative and easy to use. Limited support is needed as there is no installation (except downloading an app from the store). Industrial HVAC products The approach also enables a contactless customization of the appliance at the end of the production line in the factory with no power supply on the appliance because NFC is energy harvesting. The approach can be used for industrial HVAC products as well as residential appliances. NFC provides cost advantages, eliminating the need for a high-end display on an appliance. Some sensitive technical data or setting may be reserved for a technician only Information is also addressable: A filter can be set with data from the appliance accessible by profile. Some sensitive technical data or setting may be reserved for a technician only or for use at the factory. In the HVAC application as implemented, the controller of the appliance is used as the NFC tag and the smartphone is used as a reader/writer terminal with color display. The controller of the appliance includes an NFC antenna and a small, dedicated NFC controller with memory. Providing additional benefits On the other hand, the smartphone can be iOS or Android and needs to have the COTHERM NFC App downloaded. NFC is available on iPhone from iPhone 7 and on Android; all smartphones with NFC are compatible. NFC technology provides additional benefits, too, including: Traceability and storage of historical data. Easy setting of Wi-Fi or Bluetooth configuration when combined with NFC. Preset of the appliances or any equipment at the factory, including enabling or disabling. Functions or changing settings to enable customization based on distribution channel for brand. Directly points to the correct app on the store for download when using the smartphone for the first time. Self-launch of the app when the smartphone is close to the NFC tag. Further expansion is planned in Europe. The combination of the technology has received an innovation reward as a European funding project Touch & Heat by DIGIFED Europe program (Horizon H2020). Partners in the DIGIFED program are IoTize, a French startup, and Lucht LHZ, a German manufacturer of Electric Radiator. Product introduction in other European countries is planned for 2022. HVAC equipment such as water heaters or heat pump water heater controllers are the next target for the technology.

The Role Of ‘Smart’ HVAC In The Buildings Of The Future
The Role Of ‘Smart’ HVAC In The Buildings Of The Future

The last 18 months have seen an acceleration in digitalization across many aspects of work and home life. Home spaces have become workspaces, and commercial buildings have had to adapt to changed use and lower occupancy rates. Coupled with this, there is a growing need to dramatically reduce carbon emissions from buildings - according to the International Energy Agency (IEA), the buildings and construction sectors combined are responsible for over 30 percent of global energy consumption, and nearly 40 percent of carbon emissions. Installing separate systems This means that demand for a smarter approach to heating, ventilation and air conditioning (HVAC) management is crucial for building managers, who need to ensure that their properties can adapt to changed use, respond to the wellbeing of their occupants, and run efficiently to keep emissions as low as possible. Armed with this data, facility managers can take proactive steps to improve usage Of course, architects and developers have been installing separate systems to control HVAC for decades which have given building managers greater control and access to different areas of a site. However, with digitalization comes the addition of web-based platforms to allow these verticals to integrate seamlessly with each other, providing data on how efficiently and effectively a building operates through a single view application. Armed with this data, facility managers can take proactive steps to improve usage, which will see properties proactively react to the environmental and personal needs of their occupants. Centrally controlled lighting Many commercial buildings will already have a certain element of smart technology installed – from centrally controlled lighting and HVAC systems to remote management of security and energy management systems. However, it is often the case that these multiple applications are managed in silo. This means facilities managers don’t have a consolidated view of their data. In addition, not all managers will be using the data these devices produce to take steps to reduce the carbon footprint of their properties. Embracing smart technology – and a central control platform - gives building managers access to instant data on how their HVAC assets are performing in one place. This insight can be used to gain a thorough understanding of how the different systems in the building interact, and the external factors that may impact them. Effective building controls By using this data, operators can implement effective building controls to manage efficiencies By using this data, operators can implement effective building controls to manage efficiencies, identify maintenance issues, ensure the wellbeing of occupants, and inform future investment priorities. So, for example, if a building is now being used in a different way due to changed occupancy, the data will show the manager what needs to be done to ensure it is operating as efficiently as possible. We know that there will be increased demand for more flexible spaces as companies move towards remote or hybrid working models. It is likely that we will visit our offices less for day-to-day work and use them more as hubs to meet and collaborate. The ability to turn a traditional ‘bricks and mortar’ building into an agile asset that can learn and adapt to its surroundings will become increasingly important. Smart HVAC management Smart offices will become independently intelligent, learning how occupants use the space and services, adjusting lighting, HVAC and other systems to maximize health and comfort. Smart HVAC management will create a trend for ‘healthier’ buildings that will have a positive impact in terms of improved quality of life and wellbeing of occupants, ultimately resulting in higher productivity levels. In short, there has never been a better time to adopt smart HVAC technologies. Intelligent buildings that would have been unimaginable a few decades ago are now a reality. As buildings become smarter, they can learn how occupants use the space and services and proactively adjust lighting, HVAC and other systems to improve use, cut emissions and reduce energy consumption.

Listen To Your Data And Use It To Achieve Your Business Goals In HVAC
Listen To Your Data And Use It To Achieve Your Business Goals In HVAC

Utilizing the latest in building connectivity, facility operators can uncover a wealth of data in their systems. The next step comes by leveraging that data with artificial intelligence (AI) and a suite of connected solutions. Data is analyzed to determine actionable items and achieve data-based outcomes that improve efficiencies, allow operators to meet budget goals, hit sustainability targets and deliver on occupants’ expectations. To make those high-level outcomes happen, collecting and using data correctly is proving to be critical. With the adoption of more smart building assets, operators are finding that they can finally understand the needs of their buildings and make informed decisions on their operation. Making better choices By helping facility operators make better choices, respond to immediate needs and plan strategically on multiple fronts, data creates value. But are operators of healthy buildings getting everything they can out of this data? Is it being nurtured to create all the efficiencies possible? The answers to those questions are usually no because there’s always more data to mine and more efficiencies to uncover. The answers to those questions are usually no because there’s always more data to mine With that in mind, facility operators need to be vigilant in their collection and use of data. There always seems to be more data to process and more value to squeeze out in an effort to reach or even exceed a facility’s business goals. This constant pressure to improve is creating new ways to use data to drive a building’s business outcomes ever higher. They include: Ensuring connectivity. Avoiding data overload. Using data to weigh competing goals. Learning progress tracking and reporting. Making smart decisions In general, the overarching concept is that listening to your data helps you make smart decisions. But there are questions about how to do it, whether one dataset is more important than another and how to make sense of it all. With those questions in mind, let’s look at each of these four points a little closer to find out how you can deliver better results. Every asset in your building, from the sensor that monitors occupancy in the third-floor conference room to the chiller unit that drives your entire HVAC system, needs to be connected to a central analytics hub. Doing so allows your system to review and analyze every angle of the operation with a goal of finding efficiencies and predicting needs. The overarching concept is that listening to your data helps you make smart decisions Possible building assets Here are a few helpful tips: Make sure you get data from all possible building assets. Recognize and overcome connectivity from legacy assets. Make sure differing OEM assets can speak to one another. And find an organizing platform to bring it all together. As your system begins collecting, sorting and analyzing data, another problem will emerge Remember, connectivity is a commodity. Is a retrofit possible at your facility? If so, then consider current efficiency and maintenance issues. As your system begins collecting, sorting and analyzing data, another problem will emerge: You have so much data you don’t know what to do with it all. That leads to questions of what information is important, and what isn’t. However, the real question is ‘How can I use all this information to meet my building’s business goals?’ Storing data forever It’s important to recognize that a smart building can collect thousands of datapoints every few minutes. So, understand that you will obtain a lot of data. Adopt a method to tag assets and define relationships that will help you make sense of all the data. Data analytics can help you sort, prioritize and take actions. Storing all data forever isn’t necessary, but you need baselines and historical benchmarks. Finally, be aware of the cost swell of storing data. You need to save only what’s important historically. Many times, building operators are caught in a tug-of-war over competing priorities. Meeting sustainability goals A long-term need may be maintaining safety while ensuring privacy in your facility One goal might be to successfully meet sustainability goals, while another might insist on running systems to meet narrow comfort constraints. Further, this tug-of-war may not be between two priorities; it might be between three or five or 10. The easiest solution is use data as your guide to a happy medium. Here are a few helpful tips: Recognize your immediate needs vs. long-term needs. For example, an immediate need may be addressing comfort requests from building occupants. A long-term need may be maintaining safety while ensuring privacy in your facility. Regardless of your needs, there will always be tradeoffs. Where can you find the right balance that aligns with your business goals? Steer your choices by using data analytics. Key Performance Indicators With your data already doing its work to give you insights, it’s critical to prove that the effort has been worth it. By understanding how to track progress and report on it, you will be able to help others understand the gains you’ve been making. From selecting and defining Key Performance Indicators (KPIs) to monitoring their fluctuations, tracking and reporting is how you show value in what might have otherwise been considered an intangible benefit. To that end, create a proof-of-progress report that you are pursuing your targets To that end, create a proof-of-progress report that you are pursuing your targets. Utilize your platform to see the big picture. And keep in mind that some progress might be invisible without analysis. Remember that not all analytics are equal. Canned reports might not suit your situation, so developing custom reports is extremely valuable. Reaching successful outcomes For example, a large building portfolio owner in the U.S. might track the monetary impact of open faults to justify capital spending. Or a facility owner in Australia may generate a National Australian Built Environment Rating System (NABERS) report to deliver updates to tenants. It’s worth noting that reports also might be required by building codes or requested by an internal accounting or compliance team. Listening to your data is critical in a smart building, and just as critical is letting that data drive you toward your business goals. To reach successful outcomes, you need to make sure the data is being properly collected and analyzed, and then presented in a way that helps tracking and reporting your progress. Once those elements have been successfully balanced, you’re on your way to getting the most out of data.