Heat Pumps - Expert Commentary

Gas Boiler Ban 2025: The Challenges Ahead To Reaching This Milestone
Gas Boiler Ban 2025: The Challenges Ahead To Reaching This Milestone

As part of the UK Government’s stated commitment to net-zero carbon emissions by 2050, gas boilers, along with other fossil-fuel burning boilers, are to be banned in newbuild homes from 2025 under the Future Homes Standard. Although the ban has received a widespread welcome in principle, there has been criticism. Environmental groups have criticized the ban for not going far enough in tacking the escalating climate crisis, and the construction and home-building industries have criticized it for the challenges it brings in achieving a viable home-heating alternative in such a short space of time. Placing significant demand Despite the criticism, the ban doesn’t go far enough; applying to newbuild homes only, with, as yet, no plans to phase out gas heating in existing homes. New heating technology has to be ready to roll out before 2025, whether it’s to 160,000 homes per year (the annual approximate figure of new homes built) or the UK’s entire housing stock of 29 million. Despite the criticism, the ban doesn’t go far enough; applying to newbuild homes only The Home Builders Federation, in reaction to the Future Homes Standard, has said, “It’s going to be a challenge and a huge area of work.” And it is widely acknowledged there is significant demand placed on the building and HVAC industries to produce a long-term, viable solution. Challenges include the creation of new, cost-effective designs of energy infrastructures, and implementation in time for the short deadline of less than four years away. Gas boiler heating systems From energy design engineers to developers, suppliers, and energy companies, everyone in the supply chain is affected in delivering a solution that UK homeowners can afford and that developers can supply. The communications challenge also cannot be underestimated, to bring along the public to the reality that homes cannot, ultimately, continue to be heated by the gas boilers they are so familiar with.   The most likely low-carbon alternative to gas boiler heating systems is generally acknowledged to be heat pumps and heat networks, powered by renewables. It has been estimated by the Committee on Climate Change that by 2030 there will be 2.5 million heat pumps in new homes. Heat pumps offer comparable heating power to gas boilers and are powered by low-carbon electricity. Heat pumps have great potential for saving carbon; approximately 25-85 tCO2 per home over an average lifetime, reducing carbon emissions by 90%. Existing gas system But hydrogen is expensive to produce and although the existing gas system could be readily used for supply But for heat pumps to provide the level of warmth, particular in winter, and summer, weather in the UK, their effectiveness relies on excellent insulation, including triple glazing and adaptations to walls, floors, and ceilings. And while there has been a drive to get our draughty homes better insulated in the UK in recent years, with various grants and funding, this will be particularly crucial for newbuilds going forward. Hydrogen boilers could be an alternative to gas boilers. Hydrogen produces no emissions when burnt, only water and heat. But hydrogen is expensive to produce and although the existing gas system could be readily used for supply, and by consumers already familiar with a boiler system, it is not yet seen as a full solution to the replacement of gas. Technically qualified workers Trials are due to be carried out in the north-east with hydrogen-ready boilers. But the impending deadline and challenge for production and systems to be ready and tested, for mass implementation is unrealistic. Even before the Future Homes Standard was announced, there was an acknowledged shortage of skills. Engineering UK, in a recent survey, found that an additional 1.8 million engineers and technically qualified workers would be needed by 2025 in order to meet demand. But the impending deadline and challenge for production and systems to be ready and tested Nearly a third of HVAC firms have declared a skills shortage, with many feeling there is a crisis in the sector of sufficient qualified workers who can satisfy the new regulations. Now the demand is set to rise with the ban, as well as Brexit. A large proportion of qualified HVAC workers are sourced from the EU, further compounding the crisis of the skills shortage already faced.    Zero-Carbon technologies From imagining life without a gas boiler to a young person seeing their future career in engineering and renewable energy, effective communications and campaigns could go a long way. Targeted lifestyle campaigns, with positive, compelling case studies of homes of the future being powered by green, zero-carbon technologies could help to drive the momentum for innovation from a domestic base. Talent strategies could also combat the reality of an ageing and diminishing workforce in HVAC and other sectors. It’s vital now, more than ever, that young people see a career in renewable and eco-living technology as, not only rewarding but futuristic, global, and sophisticated. Any alternative to gas heating has to be affordable for UK households, and therefore for housing developers to adopt. Fuel poverty is a real risk. Energy-Saving measures The right help needs to be in place to support the development and take-up of the alternative According to the Committee on Climate Change, it costs £4,800 to install low-carbon heating in a new home, but £26,300 in an existing house while there are various funding initiatives for households adopting energy-saving measures, the right help needs to be in place to support the development and take-up of the alternative. Not just for newbuild homeowners, but beyond 2025 when existing households are called upon to switch. The Home Builders Federation have said of the Future Homes Standard, “Ambitious deadlines pose enormous challenges for all parties involved including developers, suppliers, energy companies in terms of skills, design, energy infrastructure and the supply chain.” Low-Carbon heating technology But there is also a stated dedication to achieving what can be realistically achieved, proving that there is a genuine commitment to ensuring our brighter, cleaner future and planet with low-carbon heating technology. The ultimate challenge now will be in Government, agencies, and industry working together, in a dedicated way, to be realistic about, and tackle the challenges across the board so the right solution for our home-heating future can be achieved, in time, and ready for a rollout for the new homes we build from 2025.

Heating Whole Districts Through Heat Networks
Heating Whole Districts Through Heat Networks

Pete Mills, Commercial Technical Operations Manager at Bosch Commercial & Industrial outlines how cities are using heat networks to achieve UK carbon emission targets. Heat networks, or district heating, are becoming an ever-greater part of our industry’s involvement in larger scale schemes. The ability to help the decarbonization of heat both now and in the future has made them an attractive solution to the new-build sector, as well as those undergoing deep renovation works. Net zero 2050 The UK’s net zero 2050 target may seem like a long way off. But steps need to be made now in order to reach this, something that our leading cities have recognized. Many have set their own carbon targets to ensure they stay on track. This is why heat networks’ ability to provide efficient heat and hot water to multiple buildings (and as the name suggests, whole districts) is a particular reason why many cities up and down the country are turning to them as a solution. What are heat networks? Generally, heat networks are defined as a system of supply pipes with a centralized heat generator (Energy Centre) that serves multiple domestic or non-domestic dwellings. These are usually in different buildings, but sometimes within a single large building like an apartment block or a university campus.District heating is often used to describe larger scale systems District heating is often used to describe larger scale systems of this sort, where there will be many buildings connected over a larger geographic area. In these systems, although the heat is provided ‘off-dwelling’, it is also common to have more than one energy centre. The principle is that energy for heating (and sometimes cooling) is supplied through the system of pipes, with each individual user being metered for the energy they use. Minimize pipe lengths Heat networks offer a number of advantages but are best suited to areas where there is high heat density, that is to say where there are multiple ‘households’ close together in order to minimize the length of pipes within the network. One of the key advantages for heat networks is their adaptability to use any form of heat generation. A key advantage from an environmental perspective is that they make use of waste heat, from sources such as electricity generation, waste incineration and industry. Heat networks are defined as a system of supply pipes with a centralized heat generator that serves multiple domestic or non-domestic dwellings The scale of the combined heat requirements of all these dwellings also helps the inclusion of renewable energy sources, which may be more difficult and costly to achieve at the individual dwelling level. Overall, their flexibility to use whatever heat source is available, makes them easier to decarbonize in the future.Other key benefits for Local Authorities and Housing Associations have been the elimination of individual gas appliances within dwellings. This has significant cost savings reductions for Local Authorities and Housing Associations where gas landlord checks are eliminated, along with the issues associated with access. City developments Today City Councils and developers are opting for heat networks to provide the heating and hot water for new redevelopment projects. The largest of these is the ambitious Leeds Heat Network, which once completed is set to be one of the UK’s largest new heat networks, connecting 1,983 council homes and numerous businesses in Leeds. The first scheme under the City Region’s District Heating program, the green initiative looks to reduce carbon emissions for the area as well as energy bills for the residents living there.The green initiative looks to reduce carbon emissions for the area Even more innovative is how the network will connect to the Leeds Recycling and Energy Recovery Facility, which burns black bin bag waste to generate heat. In theory this would make the network fully sustainable. There will be back-up support from efficient Bosch Commercial & Industrial boilers, which will only be switched on when required, say the colder months where the need for heat is higher. Climate change targets An hour’s drive away from Leeds is the city with one of the most ambitious climate targets in the UK. Manchester intends to be carbon-neutral, climate resilient and zero waste by 2038 – 12 years before the overall UK net zero 2050 target needs to be hit.To help achieve its ambitions, work has been taking place on the Manchester Civic Quarter Heat Network (CQHN). Manchester hasshown the versatility of heat networks due to the number of commercial buildings it will support The project will generate low-carbon power, heat and hot water for initially six council buildings and some residential properties with the possibility for the network to grow and connect further buildings across the city centre. Some see district heating as a solution solely for residential purposes, however Manchester have shown the versatility of heat networks due to the number of commercial buildings it will support. The project itself has also given Manchester a new landmark, the impressive ‘Tower of Light’, which incorporates the five flues from the technology powering the network. This beacon not only represents the city’s commitment to reducing its carbon footprint but also the innovative nature of district heating. Heating Battersea Power Station The final example lies in the Capital and may be one of the most famous developments in the UK at the moment. Battersea Power Station is not only one of the most iconic landmarks in London, but also the center piece of one of the most high-profile, large scale mixed-use redevelopment projects ever undertaken in the Capital.Battersea Power Station is a high-profile, large scale mixed-use redevelopment project The project involves the development of a district heating and cooling network, with a two-level underground energy centre – one of the largest of its kind. This complex heat, cooling and electricity network will continue to expand as the project continues to undergo its development stages. Looking ahead These are just a few examples of cities taking advantage of district heating and its many benefits, but near all cities in the UK have multiple heat network projects underway. Like with most innovations, smaller urban areas should then follow suit. The importance of district heating will no doubt become more and more prominent. Its ability to power whole areas and multiple buildings can already help efficiency levels, however its potential may be even greater in the future. One key energy transformation that is looking more and more likely is the decarbonization of the gas grid to hydrogen blends and ultimately 100% hydrogen. If these can be utilized in heat networks then the benefits will definitely put us and UK cities in a good place as we continue our journey towards net zero.

Now Is The Time To Prepare For A Boom In Heat Pump Sales
Now Is The Time To Prepare For A Boom In Heat Pump Sales

As the UK continues to battle through the coronavirus crisis, HVAC business owners and installers can be putting some of their enforced downtime to good use. This period of subdued trading is a rare opportunity to get into better shape for when economic activity picks up. One way of doing this is by sharpening the focus on markets which promise strong growth – and few markets are growing faster than that for heat pumps.   The potential here is huge. Some 28,000 heat pumps are currently installed in the UK every year, and before the pandemic this number was rising annually at a rate of 15-30%. That equates to sales doubling every three to five years. New-builds account for the majority of those sales, but 30% are retrofits, and about 30% of those retrofits are in private residences. This means there’s a big opportunity for doing conversions from oil boilers to heat pumps at rural homes not connected to the gas grid. The ‘New Normal’ and Heat Pumps It is only realistic, of course, to expect a lingering dip in HVAC sales of all kinds, including heat pumps, until the post-pandemic world gets back on its feet. But when we do turn the corner into the ‘new normal’, heat pump sales will again climb strongly. One reason for this is consumer demand, the other is government policy. End-users are now increasingly aware of the dangers and disruptions threatened by carbon emissions and climate change – informally known as ‘the Blue Planet Effect’ – and more are being guided by their consciences to make environmentally-responsible heating choices. An Expected Spike In Demand Many end-users are also encouraged by the prospect of receiving payments from the government through the Domestic RHI tariff. When we do turn the corner into the ‘new normal’, heat pump sales will climb strongly If RHI tariffs are the carrot, however, the government is also going to wield a big stick. The Chancellor’s spring statement last year dropped the bombshell that low-carbon heating systems, not fossil-fuel heating, should be installed in all new homes built after 2025. Though this policy might perhaps get slightly delayed and diluted, there can be no doubting that radical change is on the way.           With all this in the pipeline, the industry should be preparing now to cope with the increased demand. But there’s some way to go: of the UK’s 120,000 registered gas engineers, merely 600 or so are MCS-registered to install heat pumps. Many more will be needed. MCS Certification Some installers are already recognizing this opportunity. Some 28,000 heat pumps are currently installed in the UK every year, and before the pandemic this number was rising annually at a rate of 15-30% This is evident in the heightened level of interest in the one-day introductory heat pump courses run nationwide by the Viessmann Academy. These courses provide a useful overview of what heat pump installations involve, helping participants decide whether or not they would like to go on to qualify with the MCS quality assurance scheme. This is a crucial decision, because having MCS certification is an obligation when installing equipment eligible for Domestic RHI payments. Some course participants decide to take the next step to MCS certification straight away, others decide to wait a while – but standing still in a fast-moving market can mean getting left behind! F-Gas Certification So what else must HVAC businesses and installers consider about heat pumps, in order to stay ahead of the game? In addition to MCS certification, F-Gas certification is also necessary when split air source heat pumps are installed. This is because the outdoor and indoor units have to be connected on-site with refrigerant pipework. Some installers choose to get F-Gas certified themselves, others sub-contract this part of the job to someone who’s suitably qualified. Of the UK’s 120,000 registered gas engineers, merely 600 or so are MCS-registered to install heat pumps It is possible to sidestep this need, however, when it is appropriate to install a monobloc heat pump – and the widening choice and affordability of monobloc designs is making them appropriate for a wider range of properties. A good example of this is Viessmann’s new Vitocal 100-A, an outdoors unit which has no need for a complementary indoor unit and is also easy to install because most components are integrated in the unit. New, compact and affordable air source heat pumps such as this, offering much-needed space-saving solutions for urban homes, are another reason why the heat pump market will boom. The Challenges Of Heat Pump Installation Though technological advances are making things easier, installing a heat pump isn’t ever going to be quite as straightforward as replacing an old boiler with a new one. Before starting an installation, first it is necessary to assess whether a heat pump is suitable for the property. This means checking that the property is well-enough insulated; checking the existing system’s radiators, which may need supplementing or replacing with bigger radiators or underfloor heating because of the lower flow temperatures of a heat pump system; and calculating the required size of the heat pump according to the building’s heat loss (and not including hot water demand). This period of subdued trading is a rare opportunity to get into better shape for when economic activity picks up At the installation stage itself, much of the work will be familiar to boiler installers, though weather compensating controls are obligatory for all MCS-approved work and as part of building regulations Part L. It’s also important to note that planning permission requires minimum distances between the heat pump’s outdoor unit, the plot’s borders, and neighboring properties. If this seems complicated, it doesn’t have to be: some heat pump manufacturers provide a calculator to simplify the task. Now Is The Time To Be Proactive Just as installers need a little time to assess whether a property should switch from a boiler to a heat pump, end-users also need a little thinking time, to consider adopting a technology new to them. By being proactive, HVAC businesses and installers can reap what they sow When customers get in touch because their existing boiler has broken down, the pressure for a quick fix can rule this out. But right now, when many of us have time on our hands, there’s the chance to inform customers of alternative heating solutions before their boiler needs replacing. Taking such pre-emptive action, by emailing information or mailing leaflets to customers, does require a little effort, but at least now there’s the time to do it. We are heading into a new era which will see boiler sales decline while heat pump sales rise. By making preparations for these profound changes, and by being proactive, HVAC businesses and installers can reap what they sow.

Latest American Standard Heating & Air Conditioning (Ingersoll Rand) news

Ultima Diaphragm Flush Valves From American Standard Aim To Stop Valve Run-On Before It Starts
Ultima Diaphragm Flush Valves From American Standard Aim To Stop Valve Run-On Before It Starts

Combining superior performance and reliability, new Ultima Diaphragm Flush Valves from American Standard are built to reduce maintenance and save water in commercial applications. The flush valves, available for commercial urinals and toilets, feature exclusive and proprietary DynaClean Technology, engineered to stop valve run-on. Those who have stepped foot in a public restroom with a toilet continuously running have experienced the most prevalent problem with diaphragm flush valves. A clogged refill orifice causes the valve to continuously run and not shut off, which can potentially waste one to two gallons of water per minute. To prevent valve run-on, each Ultima Diaphragm Flush Valve has a DynaClean Wiper Spring, American Standard’s exclusive self-cleaning technology, which cleans the refill orifice with every flush. chlorine-resistant material Ultima Diaphragm Flush Valve is available through top distributors and at plumbing supply houses nationwide The wiper spring keeps the orifice clear of debris and mineral build-up, helping to deliver maximum performance with every flush while saving on water usage and maintenance costs. With toughness and reliability in mind, the Ultima Diaphragm Flush Valve is equipped with a proprietary EvoLast Diaphragm, designed to outperform and outlast diaphragm flush valves from industry competitors. The EvoLast Diaphragm is made of a premium chlorine-resistant material that delivers consistent performance and resists premature deterioration and failure from water treatment chemicals. Ultima Diaphragm Flush Valves are fitted for the following American Standard commercial products: Urinals Washbrook urinal 6145 Series Manual Urinal Flush Valves (0.125, 0.5 and 1.0 gpf) 6145SM Series Sensor-Operated Urinal Flush Valves (0.125, 0.5 and 1.0 gpf) Toilets Madera toilet 6147 Series Manual Toilet Flush Valves (1.1, 1.28 and 1.6 gpf) 6147SM Series Sensor-Operated Toilet Flush Valves (1.1, 1.28 and 1.6 gpf) diaphragm flush valves Two easy retrofit options offer facility operation and maintenance professional’s flexibility and a streamlined approach to improve performance. Most piston and diaphragm flush valves can be replaced with the Ultima Diaphragm Valve thanks to industry standard rough-in dimensions, or Ultima Diaphragm Assemblies can be installed in flush valves from other major manufacturers to help ensure reliability in existing applications. Both installation options deliver the added benefits of DynaClean and EvoLast. The Ultima Diaphragm Flush Valve is available through top distributors and at plumbing supply houses nationwide.

Growth Of Women In HVACR Organization Reflects Changing Workforce
Growth Of Women In HVACR Organization Reflects Changing Workforce

There is an enormous labor shortage in the skilled trades, and women have stepped up to assume many positions beyond office work alone. Throughout the Heating, Ventilation, Air Conditioning and Refrigeration (HVACR) industry, women are proving to be excellent technicians, service managers, sales people, marketers and more. Networking, mentoring, and education The increasing role of women in the HVACR industry is reflected in the rapid growth of Women in HVACR, a non-profit organization dedicated to improving the lives of its members by empowering women to succeed through networking, mentoring, and education. With a massive labor shortage, women make up a large untapped resource for a potential workforce to fill jobs Approximately 53% of the current skilled-trade workforce is 45 years or older. Estimates say that by 2022, 115,000 new jobs will be available. Currently only 4% of HVACR industry jobs are held by women, with only 1% of field technician jobs held by women. With a massive labor shortage, women make up a large untapped resource for a potential workforce to fill jobs. Members from virtually every sector of the HVACR field “Our organization has snowballed in growth, year over year, providing new avenues for networking, partnerships, collaboration and personal development,” says Danielle Putnam, 2019 Women in HVACR President. “For women excited about growing their careers in the HVACR industry, this organization supports each other and is unashamed to show vulnerability so we can better connect with each other to support and help.” The first international organization for women in the industry, Women in HVACR has 447 current members from virtually every sector of the HVACR field from technicians to contractors, distributors, wholesalers, manufacturers and more, at every level. The organization offers free student memberships as well. There are currently 79 participants in the mentorship program, and the Ambassador Program in 2019 has seven Ambassadors Mentorship programs Member benefits include scholarship opportunities, mentorship programs, a member-only online directory by state, and bi-weekly Zoom video conference calls. Additional benefits include regular updates on Facebook and LinkedIn, an annual conference, and quarterly newsletters. Members can serve as an ambassador for WHVACR and can participate in member-only discussions through HVAC-Talk (a knowledge sharing website), Service Roundtable (a site sharing contractor tips), and HARDI (an organization of distributors). The organization has awarded $19,000 in HVACR Scholarships since 2015. Sponsorship and membership have grown. There are currently 79 participants in the mentorship program, and the brand-new Ambassador Program in 2019 has seven Ambassadors and five scheduled events. Member Involvement “One of our key initiatives for 2019 is member involvement,” says Putnam. “We are focusing on this by setting strategic goals within each board committee to better engage our members. Women love to multi-task and get involved – it is our nature – so we want to make sure the communication channels are open wide and everyone clearly understands how vital they are to the networking, education and mentoring within our organization.” “Women in HVACR is a name that so many want to get behind and support, get involved and be a part of something,” says Putnam. “Member involvement is huge.” Given the interest generated during the panel discussion, Ruth King applied for status as a non-profit organization under the name Women in HVACR Women in HVACR The organization’s growth comes from humble beginnings. In 2002 during the AHR Expo in Chicago, Ruth King and Gwen Hoskins began a discussion about the increased number of women joining the HVACR industry and the need for a way to share knowledge and experience through networking while encouraging and supporting one another. This conversation between two women was the catalyst for the organization. From this simple discussion, a panel discussion was hosted by Comfortech entitled: Women in The Industry during the 2003 conference held in Dallas in conjunction with the Contracting Business Woman of the Year breakfast. The panel consisted of four women within the HVACR industry and was attended by approximately 40 people. From there, given the interest generated during the panel discussion, by the end of the year Ruth King had applied for status as a non-profit organization under the name Women in HVACR. As so it began. Advice To Women We have many male members, and even one male Mentor in our Mentorship program"Currently there are 70 or so sponsors of the organization at various levels. Top-tier Diamond Sponsors are PROPARTS HVAC Parts and Supplies, Ingersoll Rand, Trane, American Standard, York, Johnson Controls, Allied Air Enterprises, Magi-Pak, COSCO and Armstrong Air. One misconception about the Women in HVACR organization is that it is a women-only group. “Though we are a group whose mission is to support women in the HVACR industry, there is no requirement that you be a woman to fulfill this role,” says Karen DeSousa, Women in HVACR Vice President. “We have many male members, and even one male Mentor in our Mentorship program.” What’s the organization’s advice to women entering the HVACR field? “Don’t give up!” says DeSousa. “Though you will experience setbacks and hurdles in many forms, this industry is worth the long hours, sometimes difficult working conditions, endless need for continuing education and more.”

Trane Recognizes SL Green Realty Corp. For Outstanding Energy Efficiency Commitments
Trane Recognizes SL Green Realty Corp. For Outstanding Energy Efficiency Commitments

A notable New York City building owner is setting a high bar in energy efficiency and sustainability upgrades. Trane, global provider of indoor comfort solutions, and a brand of Ingersoll Rand, has recognized SL Green Realty Corp. with an Energy Efficiency Leader Award for demonstrating an outstanding commitment to best energy practices. SL Green engaged Trane to install two energy efficient centrifugal chillers and 1.37MW of thermal energy storage at its iconic 11 Madison Avenue building in New York City. This Trane Thermal Battery cooling system behaves like a battery, charging CALMAC thermal batteries when excess or inexpensive energy is available, and discharging when demand or price is high. Trane Thermal Battery cooling system During peak cooling season, the thermal batteries produce more than 500,000 pounds of ice each night During peak cooling season, the thermal batteries produce more than 500,000 pounds of ice each night. The ice then cools off the building during the day, significantly decreasing SL Green’s carbon footprint, energy consumption and operating costs. Through the ice battery installation, SL Green has lowered tenant energy cost by 10 percent, reduced energy and operating costs by more than US$ 730,000 annually and decreased carbon emissions by 1.4 million pounds – the equivalent of taking more than 130 cars off the road or planting 188 acres of trees. Energy Efficiency Leader Awards “The Energy Efficiency Leader Awards recognize businesses and institutions that demonstrate impactful contributions towards environmental sustainability,” said Donny Simmons, president, Trane Commercial HVAC, North America, Europe, Middle East and Africa. “SL Green is a perfect fit; the smart energy practices at 11 Madison Avenue prove business and environmental goals can work hand in hand for a more sustainable future.” The Thermal Battery system plays an integral role in helping SL Green reach its portfolio-wide sustainability goal of 30 percent reduction in greenhouse gas emissions by 2025, along with its commitments to New York State and New York City energy mandates of reducing greenhouse gas emissions 80 percent by 2050. Energy efficient practices “SL Green capitalizes on every opportunity we have to reduce our carbon footprint because we have a responsibility to our tenants, our partners and New York City as a whole,” said Edward V. Piccinich, Chief Operating Officer, SL Green Realty Corp. “This innovation is a worthwhile investment, both operationally and financially. We’re honored to be recognized by Trane for leading the way.” SL Green’s and Trane’s commitments to sustainability extend beyond energy efficient practices; the companies share similar goals focused on enhancing quality of life and climate action: SL Green is committed to transforming the built office environments; to mitigate climate change and provide a high quality of life for all New Yorkers. The company’s vision has been manifested through the development of One Vanderbilt, a new, Class A office tower where all design, construction, and operational elements prioritize environmental stewardship and societal responsibility. Trane is meeting the challenge of climate change through bold 2030 Sustainability Commitments. Its Gigaton Challenge is designed to reduce the customer carbon footprint from buildings, homes and transportation by one gigaton1 CO2e, while leading by example in its own operations – achieving carbon neutral and net positive water operations

vfd