Browse Fresh Air Ventilators

Fresh Air Ventilators - Expert Commentary

How HVAC Solutions Could Help Lead The Way Out Of The Pandemic
How HVAC Solutions Could Help Lead The Way Out Of The Pandemic

With the roadmap laid out for the government to guide us out of lockdown, the end of the pandemic seems as though it could be in sight. However, HVAC units remain outdated in hotels, hospitals, schools, and offices and there is a worry that COVID-19 can still spread quickly and easily through air vents, mitigating the effects of lockdowns and vaccinations. Dr. Rhys Thomas, Chief Scientific Officer at infection mitigation specialist PP-L and a frontline NHS doctor, says that the government’s neglect of using HVAC solutions to reduce transmission is a major oversight. Airborne transmission indoors By failing to follow the lead of other nations that are now recognizing the importance of ventilation in relation to the airborne nature of the virus, the UK’s approach hasn’t been as comprehensive or as forceful as it could be, with quietly introduced, piecemeal changes to regulations being too little, too late. At the moment, some governments don’t want to come out and admit that COVID-19 is an airborne hazard and that their failure to recognize it as such has led to higher infection and mortality rates and suffered even greater impacts from new variants. Research shows that 80% of the spread of the virus is through airborne transmission indoors– the inhalation of infected droplets that are moving around in the room’s air currents or ventilation systems– which a two-meter distance or the opening of the window is unlikely to combat. New quarantine hotels The UK was geared up for an influenza-like pandemic rather than an airborne one The airborne nature of COVID-19 is what has caught governments off guard and meant we are still playing catch-up while new variants are starting to appear, which was also always to be expected. In terms of preparedness, the UK was geared up for an influenza-like pandemic rather than an airborne one, such as the challenge posed by a SARS coronavirus. As with all airborne illnesses, the greatest risk of transmission is indoors and in confined spaces such as public transport, office buildings, factories, and even potentially the new quarantine hotels which are being introduced to prevent the spread of the virus. The governments ‘hands, face, space’ messaging cover the opening of windows to help with airflow, but the reality is much more complex. Latest SARS Coronavirus The risk of infection indoors is vastly higher than outside, and current advice simply isn’t enough. There’s a perception – even in hospitals – that fresh air is clean air. I’ve been shocked to see hospitals that I’ve visited assuming that simply opening a window is enough. That is simply not the case – the air needs to be disinfected by ultraviolet light for it to be clean enough to prevent the spread of coronaviruses. I saw this in practice in the first SARS pandemic in 2003, where UV was used and proved incredibly effective in South East Asian hospitals once again against the latest SARS Coronavirus that causes COVID-19. The spread of the virus around the Diamond Princess cruise ship, which hit global headlines in January 2020 when more than 700 passengers and crew tested positive for COVID-19, has become a case-in-point for the theory behind the airborne transmission. Killing airborne contaminants Part F of the Building Regulations on ventilation has been updated and is out to consultation Researchers from Harvard and the Illinois Institute of Technology developed a computer model of the cruise ship outbreak, which found that the virus spread most readily in microscopic droplets light enough to linger in the air. The research added to the pressure already being placed on the World Health Organization to recognize the airborne dangers of the virus, including an open letter signed by more than 200 experts. The key point here is that there has been some level of recognition from various government departments that the virus is airborne, and they have mitigated accordingly. Part F of the Building Regulations on ventilation has been updated and is out to consultation, and the Health and Safety Executive’s COVID-Secure Guidance for the Workplace on Ventilation has also been quietly updated in recent weeks to recommend the use of ultraviolet air filtration systems, which are proven to kill airborne contaminants. Key communication issue These UK regulations are now, at last, starting to get more aligned to other global institutions’ recommendations such at the renowned Centers for Disease Control and Prevention (CDC) who support the importance of ventilation and UV devices to significantly reduce infection risk. This is a positive step, but the key communication issue is that if the government don’t fully endorse and be more vocal about the airborne threat of COVID-19, and regulatory changes being made, then neither will the wider public. This is a huge issue because the government is already preparing for this virus to be around in some form for many years to come. With 40 million doses of vaccine set to arrive in 2022 and an overall supply line that is set to last until 2025, it’s clear that there is an acknowledgment that this will be a long fight. The SAGE scientists like Professor Chris Whitty and Sir Patrick Vallance are also referring to this virus as endemic now. Long-Term readiness The government is already building long-term readiness and diluting the risks by using different suppliers With 407 million doses of vaccine on order, the government is already building long-term readiness and diluting the risks by using different suppliers, but without the acknowledgment of the airborne risks, this can only do so much – it needs to be a joined-up, blended approach. Prevention is better than the alternative because in this case, there is unlikely to be a cure for a virus that spreads and mutates at the rate this one does. Trying to keep ahead of this virus is a dangerous game. It is incredibly adaptable and there is an awful lot of guesswork about predicting the spread and virulence of new and more easily spread strains. Ongoing lockdowns are simply not an option and are increasingly ineffective as people struggle with the monotony and isolation they bring. We need to get on the front foot and not only rely purely on medicine to help solve this crisis. Air filtration systems Engineered solutions like UV-C (also known as UVGI) and air filtration systems are needed wherever possible to help cut this virus at the knees and stop transmission in the first instance. These solutions are now being brought in by several industries and many countries around the world are specifically recommending them because they are recognizing that the guidelines in their current form aren’t doing enough. Those industries such as food manufacturing and production that rely on having people on the ground and in their factories are having to look beyond what they are advised and finding solutions that actually do work. Hospitals, schools, and hotels are the next places that need to be looking at this kind of response, especially with the government’s travel regulations meaning that potentially infected travelers are being kept in potentially inadequately ventilated spaces that could actually accelerate contagion spread to other travelers or staff. Action needs to be taken now, or we risk the further unnecessary spread of this dangerous pathogen.

Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term
Change Environments Not Behaviors: How Active Air Filtration Can Help the UK Come Out of Lockdown Long-Term

According to the latest statistics, Britain now has the highest daily COVID-19 death rate in the World, following an unfortunate record month of fatalities during January 2021. While UK Government is quick to defend this statistic, the fact remains that our country has been crippled by the SARS-CoV-2 virus, and now, as the population battles through yet another lockdown, it seems that the only 'way out’ is through widespread vaccination. impact of COVID-19 Though imperative, this strategy emphasizes the real challenge that Governments across the globe have faced in trying to control this virus; that reducing the transmission or ‘R rate’ is reliant on the behaviors of people. People who have lived with some form of restrictions for too long, people who are frustrated and tired of the impact COVID-19 has had on their businesses, and people who have simply lost trust in Government U-turns and last-minute decisions. What’s more, despite the best efforts of millions to comply with restrictions, the virus itself is one that is hard to contain, particularly with asymptomatic cases unknowingly passing it to others in key locations like supermarkets or via public transport. Regardless of this challenge, there is a solution that doesn’t rely on changing people’s behaviors, but rather in changing the environment in which people live, work and socialize. That solution is the implementation of Active Air Purification Technology. What Is Active Air Purification Technology? Active air purification technology is effective in every cubic cm of indoor air and surface space simultaneously and continuously Most air purification technologies are passive in that they can only have any effect when the air containing the pollutant comes into close proximity or passes through the unit. Examples of this are filtration, UV-C, and various PCO and ionization technologies. In other words, certain operational conditions must be met in order for them to be effective. Active air purification technology is not limited in this way and is effective in every cubic cm of indoor air and surface space simultaneously and continuously. This means pollutants, like viruses and bacteria, are instantly treated no matter where or when in the indoor space they are emitted or exposed which is significant in the context of COVID transmission. Whether required to mitigate microbials, allergens, or dangerous gases and VOCs, active technology offers a unique solution to destroying microbials instantly, offering a safer, cleaner, and more effective approach to air purification in domestic, commercial, and industrial environments. REME Air Purification Technology REME is an active air purification technology developed and patented 15 years ago by RGF Environmental Group, a COVID critical environmental innovator and manufacturer headquartered in the United States. Using no chemicals or harmful substances, REME comprises a number of known air purification technologies and sciences in one product. Its active capability works by producing and maintaining similar concentrations of hydrogen peroxide molecules as those found in the outdoor air and combines a process of bipolar ionization. When coming into contact with microbials, the naturally occurring ionized molecules break them down, destroy them and then revert them back to harmless water vapor and oxygen. The bipolar ionization effect causes other airborne particulates to agglomerate together causing them to become larger and heavier and drop out of their air or get captured in HVAC filters. RGF’s REME air purification technology produces 1 quadrillion ionized hydrogen peroxide molecules every second, quickly and safely killing any airborne virus or bacteria, including SARS-CoV-2 on a continuous basis. Its effectiveness has been verified by nationally accredited independent labs and testing bodies in the US and by other governments in numerous tests over two decades, with results also confirming a 99%+ inactivation for highly infectious viruses and bacteria, such as H1N1 or ‘Swine Flu’, SARS, Norovirus, MRSA and Bird Flu, just to name a few. Vaccinate Environments And People Air purification technology drives down the R rate for good by effectively vaccinating the air in which the virus circulates In understanding exactly how active air purification technology works and its capability to successfully destroy COVID-19, it’s clear that it presents an opportunity to drive down the R rate for good by effectively vaccinating the air in which the virus circulates. This strategy is already working its way through the United States with leading brands, like restaurant chain TGI Friday, installing active air purification technology across all establishments and has also caught the attention of renowned insurance market, Lloyds of London, which has installed the technology across all UK offices to ensure its 5,000 plus staff members can return safely to work. Improving the environment For nearly 12 months the world has been coping with COVID-19, describing it as an ‘unprecedented period’ where there is no clear end. However, in vaccinating both people and the environment in which it lives, the virus can be controlled once and for all. Ultimately, with a crippled economy, in excess of 100,000 deaths and a generation of children impacted by the closure of schools, now is the time to accelerate response and change the environments in which the virus circulates, not just the people. 

Green Buildings Or Healthy Occupants? You Don’t Have To Choose Anymore!
Green Buildings Or Healthy Occupants? You Don’t Have To Choose Anymore!

HVAC systems have never received more widespread attention and media coverage than they have this year. As researchers determined that air transmission was a major factor in the spread of COVID-19, HVAC systems quickly became an area of intense discussion. Much of the news coverage from outlets like the New York Times, NPR, CNBC, or USA Today focused on air filtration. HEPA and MERV have become acronyms that people recognize, and UV Light and Plasma Ionization air purifiers have almost become dinner table topics. The need for discussion and debate about these topics is evident. As we look to resume some resemblance of normal life we need to feel safe sharing spaces with other people. Commercial HVAC Systems At the forefront of all of these discussions regarding air purification, is the massively flawed assumption that we must recirculate a large amount of the air from space to save energy. Most commercial HVAC systems only utilize 20% fresh air. That means that 80% of the air you are breathing in a public space has been on this ride before. The underlying principle here, from a thermodynamic perspective, is sound. I just spent a lot of energy (and $) conditioning this air for human comfort and now you want me to just throw it away?! In the name of all things public health, yes, throw it away! Energy Consumption It takes a large amount of energy to cool, dehumidify, and/or heat air so we humans can enjoy our time indoors in comfort Now before you draft your eloquently worded hate mail, let me take a minute to explain why we think you can just throw away perfectly conditioned air and still maintain a high level of energy consciousness. It’s true that it takes a large amount of energy to cool, dehumidify, and/or heat air so we humans can enjoy our time indoors in comfort. However, it is possible to exhaust ALL of the contaminated air from an occupied space and still conserve a large portion of the energy in that air. This can be done by passing the outside air (fresh air) and the exhaust air through separate heat exchangers where the energy can be transferred without the two air streams physically making contact. From a hygiene perspective, this process is ideal. Hospitals and industrial plants have been using one form or another of this technique for decades. The challenge for wider, commercial, adoption has been packaging restrictions of these systems and in a lot of cases the energy consumption of your supposedly energy-saving equipment. Energy Recovery Technology Cue ACT’s award-winning energy recovery technology, the Pump-Assisted Split Loop Energy Recovery Heat Exchanger. This product recently won the AHR Expo 2021 Innovation Award in the highly competitive Green Building category. The magic of the technology relies on the efficiency of the boiling and condensation process. When harnessed properly, one can exchange huge amounts of energy between two air streams just by circulating a particular fluid from one system to the next. A major benefit of allowing the fluid to boil and condense around the loop is that it allows the system to operate passively, using just the forces of good old fashion gravity. As a fluid boil, a portion of the liquid is converted into vapor which naturally wants to rise. Once that vapor gives off its energy it condenses back into a liquid that naturally wants to fall. If you can provide a source of energy input for boiling and a source of energy removal for condensing you can create a naturally circulating loop that requires absolutely zero electrical energy to operate. Two Separated Air Streams Transferring energy between two separated air streams with the least amount of total energy consumption and no cross-contamination In commercial HVAC systems, the warmer air stream can be the source of energy input and the cooler air stream can be the source of energy removal. As the seasons change, the air that is exhausted from a space flips from being warmer than the outside air (in the winter for instance) to be the colder air stream (in the summer). This means that at some point during the year you lose your gravitational advantage so for the other half of the year when you need to transfer energy in the opposite direction of gravity, ACT’s system uses a fractional horsepower pump (hence the pump-assisted part). The end result is a method of transferring large amounts of energy between two separated air streams with the least amount of total energy consumption, and with no cross-contamination. And because the fluid is circulated between the two air streams (either by gravity or by way of a small pump) this technology is highly geometrically flexible and customizable. With this product, HVAC systems can take in 100% fresh, outside air and throw it all away without having to worry about being wasteful. Improving HVAC Systems Most of the focus and efforts around improving HVAC systems have so far been centered too much on how we make old technology deal with new problems. These kinds of approaches are band-aids, at best, and often result is short-sighted solutions that never really advance the industry as a whole. ACT’s new product helps solve the problems of the new normal while moving the HVAC industry closer to that breath of fresh air we could all use right now.

Latest Honeywell Home news

2020 Rewind: Highlighting Sustainability In The Age Of Climate Change
2020 Rewind: Highlighting Sustainability In The Age Of Climate Change

Sustainability and environmental impact are core issues of the HVAC market in 2020 or any year. During the last year, HVACinformed.com has addressed multiple facets of sustainability in some of our most popular articles. This retrospective will highlight some of the sustainability articles published during 2020 at HVACInformed.com. An HVACInformed.com Expert Panel Roundtable commented on various aspects of sustainability, including the responsibility of HVAC manufacturers to develop more sustainable, energy-efficient products that can reduce a building’s reliance on fossil fuels. Energy consumption pattern Honeywell has launched a platform that incorporates newer technology. Combining self-learning algorithms with building automation, Honeywell Forge Energy Optimization is a cloud-based system that analyzes a building’s energy consumption pattern and adjusts its settings. Heat networks, or district heating, are becoming an ever-greater part of the industry’s involvement Pete Mills of Bosch Commercial & Industrial outlines how cities are using ‘heat networks’ to achieve carbon emission targets in the United Kingdom. Heat networks, or district heating, are becoming an ever-greater part of the industry’s involvement in larger-scale schemes. The ability to help the decarbonization of heat both now and in the future has made them an attractive solution to the new-build sector, as well as those undergoing deep renovation works. Centralized heat generator Generally, heat networks are defined as a system of supply pipes with a centralized heat generator (Energy Center) that serves multiple domestic or non-domestic dwellings. These are usually in different buildings, but sometimes within a single large building like an apartment block or a university campus. Some U.S. cities are taking the lead to make building performance standards mandatory, thus providing additional incentive for customers to invest in new, more efficient and climate-friendly HVAC technologies. New York City has deployed its Carbon Mobilization Act, which will cut six million tons of CO2 annually by 2020. Washington D.C. adopted the first Building Energy Performance Standard, which will reduce energy use in buildings by more than 20%, thereby lowering carbon dioxide emissions by a million tons annually. Improving environmental performance Newer buildings tend to be designed to be ‘green’, but what about older existing buildings, which still represent the largest share of environmental impact? There is more work to be done in the retrofit sector; and improving environmental performance of older buildings often involves ‘deep retrofits’ that are costly and impact multiple factors inside a building. In the COVID-19 era, there is also growing concern about needs such as circulating outside air, increasing humidity, and improving filtration systems even as older buildings seek to become greener. The consistent theme is a need to work toward better-designed, more energy efficient and healthier buildings The consistent theme is a need to work toward better-designed, more energy efficient and healthier buildings. The California Air Resources Board (CARB) is moving forward with rulemaking that sets limits and deadlines to decrease the use of refrigerants with global warming potential (GWP) in the commercial refrigeration market and in the residential and commercial stationary air conditioning equipment markets. Air conditioning systems California regulations are widely expected to influence the direction of other states seeking to regulate GWP of refrigerants. The addition of biodiesel lowers the carbon content (and thus the environmental impact) of heating oil. The U.S. Environmental Protection Agency says biodiesel reduces greenhouse gas emissions, including nitrogen oxide. The process of making biodiesel from renewable and organic sources also boosts the environmental profile. The Wyss Institute at Harvard University has developed an evaporative cooling system that uses a specially coated ceramic to cool air without adding humidity. Researchers say the approach can yield more affordable and environmentally friendly air conditioning systems for the future.

Honeywell Unveils Honeywell Electronic Air Cleaners With UV Systems And New Line Of IAQ Sensors
Honeywell Unveils Honeywell Electronic Air Cleaners With UV Systems And New Line Of IAQ Sensors

Honeywell has announced expanding its holistic Healthy Buildings Air Quality offering to help improve and measure commercial building indoor air quality (IAQ) with the introduction of Honeywell Electronic Air Cleaners (EACs) with UV Systems and a new line of indoor air quality (IAQ) sensors. Honeywell Electronic Air Cleaners Honeywell EACs with UV help remove impurities from the air as well as provide filtration and disinfection, without significantly impeding air flow. The new IAQ sensors include Honeywell's Particulate Matter Sensor PM 2.5, Total Volatile Organic Compound (TVOC) Sensor and All-in-One IAQ Sensor. Air quality is essential to a healthy building. It can impact occupant health and productivity, energy efficiency and real estate value. The quality of air is affected by the presence of pollutants in the indoor environment that may cause harm. Facilitating cleaner and safer buildings Building owners are looking for ways to create safer, cleaner air to instill occupant confidence" When IAQ is poor, occupants can experience a drop in productivity as well as adverse health effects such as asthma and bronchitis. The concentration of some pollutants can be two to five times higher indoors than typical outdoor concentrations. "More people are paying attention to air quality and the importance of creating healthier environments in the spaces we use for work, school, entertainment and travel," said Manish Sharma, Vice President and Chief Technology Officer, Honeywell Building Technologies, adding "Building owners are looking for ways to create safer, cleaner air to instill occupant confidence as well as attract future commercial tenants." Sensing technology aids in enhancing IAQ Manish added "We're talking to hundreds of customers who are navigating these concerns right now and working with them to update their building systems to better protect occupants. It doesn't always have to be a complicated process of ripping out old equipment and starting from scratch. It can be a straight-forward HVAC upgrade with modifications that address specific concerns and minimize potential side effects.” He further stated, “Sensing technology is an important tool to identify opportunities for adjustments, only when you can measure particles can you properly control them. Adding a system like Honeywell's can improve a building's air quality by filtering particulates and reducing contaminants." Boosting indoor air flow and quality Honeywell EACs use an electric charge to help remove solid and liquid impurities from the air without impeding air flow. The UV System emits ultraviolet light to damage the DNA structure of certain microbes at the cellular level and inactivate various viral, bacterial and fungal organisms – thus providing filtration and disinfection in one system. Ideal for retrofits, property upgrades and new construction alike, Honeywell EACs with UV Systems can be installed inside a commercial HVAC system, without the need to remove old equipment and install a new system entirely. Honeywell EACs can help save energy, while providing a better heat exchange and can pay for itself with the savings. Enhancing IAQ without changing HVAC infrastructure Honeywell IAQ sensors help owners better determine a building's environmental state and air quality status The new Honeywell IAQ sensors help building owners better determine a building's environmental state and air quality status and allow them to take corrective actions through the building management system (BMS) without a need to rip and replace existing sensors. It is possible to add new sensors to existing temperature, humidity and CO2 sensors currently in place within the building or deploy new All-in-one IAQ sensors to cover multiple sensing requirements in one device. Healthy Buildings solutions Honeywell EACs with UV Systems and new IAQ sensors are the latest in a suite of offerings from the company that focus on creating healthier buildings. Honeywell recently announced upgrades to the Pro-Watch and MAXPRO Network Video Recorders and Video Management Systems solutions, which use analytics and artificial intelligence to identify if building occupants are complying with guidelines around social distancing and wearing masks. Honeywell's Healthy Buildings solution help building owners improve the health of their building environments, operate more cleanly and safely, comply with social distancing policies, and help reassure occupants that it is safe to return to the workplace. These Honeywell solutions are part of a comprehensive effort among Honeywell's businesses to come together to quickly develop solutions that are helping important sectors of the global economy recover.

Honeywell Applies Machine Learning To Boost Energy Efficiency Of Buildings
Honeywell Applies Machine Learning To Boost Energy Efficiency Of Buildings

Machine learning provides a tool to lower energy costs in a building, and Honeywell has launched a platform that incorporates the newer technology. Combining self-learning algorithms with building automation, Honeywell Forge Energy Optimization is a cloud-based system that analyzes a building’s energy consumption pattern and adjusts its settings. “We can help building portfolio owners fine-tune their energy expenditures to drive efficiencies and create more sustainable practices,” says David Trice, Vice President and General Manager, Honeywell Connected Buildings. Autonomous building solutions Honeywell says the autonomous, closed-loop building solution may deliver double-digit energy savings while decreasing a building’s carbon footprint. It can be implemented without significant capital expense or changes to a building’s current operational processes. The system autonomously and continually optimizes a building’s internal set points across hundreds of assets every 15 minutes by evaluating whether the HVAC system is running at peak efficiency.  When analyzing when to make an adjustment, the system considers factors such as time of day, weather, occupancy levels and other data points. The system considers factors such as time of day, weather, occupancy levels Honeywell Forge Energy Optimization calculates its decisions 96 times per 24-hour period in every building in a portfolio. Deployment is a simple plug-and-play process with no changes needed to business mechanics. Systems do not need to be rip-and-replaced. Results of the technology The technology has been demonstrated in a pilot at Hamdan Bin Mohammed Smart University in Dubai, United Arab Emirates, achieving an initial 10% energy savings. The pilot achieved the extra savings over and beyond what was achieved earlier in the highly smart, energy-efficient building with fully connected lighting, cooling, building management, power and efficiency control optimized based on real-time occupancy. The pilot also uncovered local control issues with the chiller plant and fresh air handling unit that were not adjusting to set points. “Honeywell Forge [was able] to drive further energy savings beyond our achievable optimization with the techniques we [had],” says Dr. Mansoor Al Awar, HBMSU’s Chancellor. The university is collaborating with Honeywell to support the advancement of artificial intelligence (AI) and machine learning to drive operational efficiencies. Energy consumption in commercial buildings is significant. Buildings and buildings construction combined are responsible for more than 36% of global final energy consumption and nearly 40% of total direct and indirect CO2 emissions, according to the International Energy Agency (IEA). Energy demand in these sectors continues to rise, driven by improved access to energy in developing countries, greater ownership and use of energy-consuming devices, and rapid growth in global buildings’ floor areas. Opportunities for energy saving It is a market where the potential impact of greater efficiencies is huge It is a market where the potential impact of greater efficiencies is huge. Heating, ventilation and air conditioning often presents the largest opportunity for energy savings in a commercial building. “Buildings aren’t static steel and concrete – they are dynamic ecosystems and their energy needs fluctuate based on ever-changing variables like weather and occupancy,” says Trice. “We are evolving building operations far beyond what would be possible even with a robust team of engineers and the rules they code in their building management system.”

vfd