Browse Fresh Air Ventilators

Fresh Air Ventilators - Expert Commentary

What’s In Store For HVAC?
What’s In Store For HVAC?

The past six months have been busy for those in HVAC as offices are updated and made safe for people to return. In addition to the various standard checks that need to be carried out, more care is being taken in relation to air movement and filtration to prevent the spread of disease. There is evidence that at least some of the COVID-19 virus can remain suspended in the air and infectious for up to 3 hours. While this is not the main form of transmission, it is vitally important, especially as we are seeing a second increase in infections, that all measures are taken to prevent the spread of the disease. Sick building syndrome In addition to the fundamental elements of HVAC in public buildings, the sector should be looking to the future of technological use; whether COVID-19 is completely wiped out or lingers in the population, we may be at risk of more new diseases in the future. Although maintenance is one of the least visible of building services, it has long played an important role in ensuring the health of buildings. Decades ago, the concept of sick building syndrome was first introduced, showing quite how important our environment is to health. Now, we are being reminded of this on a daily basis in ways that have never been under such scrutiny. We are suddenly hyperaware of what we have touched and who else is breathing our air. In many ways, this new awareness of the unseen is a boon for the sector that has so long been behind-the-scenes, but it also puts it to the test. Potentially stagnant pockets There are numerous recommendations from experts on how to increase safety Governmental guidelines have not specifically required that ventilation and air conditioning be increased in the workplace. Yet, there are numerous recommendations from experts on how to increase safety. At the low-tech end of the spectrum, the use of ceiling and table fans to increase movement in potentially stagnant pockets of air has been suggested. At the other end, technologies that have long been growing in popularity, such as remote monitoring, will really come into their own in the coming months. A particular challenge for the industry as workers return to the office under social distancing guidelines will be accessing certain areas for maintenance. For as long as the virus remains in the population, risk assessments for work will be more complex and non-essential jobs will likely be put on hold where possible. Optical remote sensors Intelligent technology and monitoring systems are already driving the market and will play a role in minimizing contact with others when visiting a site. There is already a great range of tools available: wired sensors, wireless sensors, and optical remote sensors. These allow organizations to monitor vibration, temperature, acoustics, and the power of numerous assets remotely and in real-time. Any issues can be addressed as soon as they arise, minimizing the cost and time that an engineer may need to be in the building. Installing these technologies while buildings are still unoccupied or only partially occupied will also reduce the risk of exposure of engineers to the virus and will improve the efficiency and prolong the life of important assets. Whether a second lockdown takes place or not, these tools will protect building services. Motion-Activated air conditioning Other sensor-based features such as motion-activated air conditioning also have great potential Other sensor-based features such as motion-activated air conditioning also have great potential. These can manage the new hygiene anxiety which pervades public places at the moment. In the longer term, they can be a means of building sustainability practices into the workplace, using power only when needed. Internet of Things (IoT) features such as occupancy sensors have long been growing in popularity to create buildings which are more energy-efficient and promote productivity. Many of these features are demonstrating added value during the pandemic. Occupancy sensors, for example, can be used to ensure that buildings do not exceed safe numbers for social distancing. HVAC systems will be integrated ever further into the IoT approach. Some features of virus reduction, however, have posed a challenge for systems. Air conditioning systems Air conditioning systems, for example, can best reduce the risk of viral transmission through increasing the amount of air which is brought in from the outside into the systems. This will reduce the amount of recycled air but will also increase the temperature fluctuations within the buildings. Other recommendations have included reviewing ventilation strategies, increasing ventilation operating times, deep cleaning filters, and replacing filters more often. Cutting corners on anything which reduces the risk of virus spread will only be a greater loss to the client All of these can potentially see an increase in time and cost required by the client at a time where many companies have been stretched financially. Cutting corners on anything which reduces the risk of virus spread will only be a greater loss to the client in the long run if their employees lose time to illness but it still may be a temptation. Strong working partnership FM providers must work closely with clients to understand their individual fears and needs in such turbulent times. For Anabas, we believe demonstrating expertise and experience is a means of reassuring organizations that they are in safe hands. The future of the pandemic is still unpredictable. While its elimination is hopeful, it is still well worth the investment for many organizations to install the tools which minimize the risk of infection of COVID-19 - or any future infections. Clients are looking for certainty in an uncertain world and data-driven insights and real-time monitoring are ideal ways to provide this. However, the reassurance that comes with a strong working partnership will also be more important than ever. Communicating developments and what they mean for the client, as well as assuring them their priorities are understood can set a provider apart.

Underfloor Air Conditioning: Adapting Office Spaces
Underfloor Air Conditioning: Adapting Office Spaces

Demand for underfloor air conditioning systems, which are far more flexible and adaptable than ceiling-based systems, has risen as developers and landlords scramble to reconfigure office spaces in the wake of the coronavirus pandemic. Experts have predicted a 50% reduction in office occupancy, as millions embrace working from home. What is underfloor air conditioning? A zonal underfloor air conditioning system makes use of the raised floor void as a plenum for the distribution of air. Supply and return channels are created under the floor, and zone units serving areas of up to 300m2 are suitably located throughout the office space to generate conditioned air locally to serve the needs of the space. Underfloor air conditioning goes further than displacement systems, offering full function control of the indoor environment Individually controlled fan terminals of either recessed or floor standing configuration are let into the floor over supply plena. These terminals introduce air into the space above in accordance with the dictates of their own on-board temperature sensors and controls system. Users can adjust fan speed and set point temperature individually. Return air grilles are positioned in the floor over return plena. The whole system is controlled by means of the electronic management system controlling the operation of the zone units and the associated fan terminals permitting centralized monitoring and control. Underfloor systems are inherently compartmentalised and offer highly effective solutions in multi-tenant areas and other environmentally challenging applications.  Many low-height refurbished spaces suffer from high levels of user complaint due mainly to draft from ceiling mounted outlets positioned too close to the user. The changing work environment At AET Flexible Space, we have seen increased demand, both from existing clients looking to reconfigure their office space, and new clients looking for a flexible air conditioning which can help to future-proof their office. A huge benefit of an underfloor air conditioning system is that they are inherently flexible, and can be changed to suit new room layouts within minutes. Our unique Fantile™ units are installed to sit in-line with the finished floor, and can be easily repositioned at any time without the need for the significant, and costly, building works usually involved in repositioning ceiling-based ductwork. A huge benefit of an underfloor air conditioning system is that they are inherently flexible We are already seeing that COVID-19 has accelerated the trend towards more flexible, future-proofed, and sustainable office space. We have been seeing an increase in demand for our underfloor systems for some time, but the coronavirus lockdown has certainly made more people consider the end-users of this office space, and how they can be best served Workplace wellness is also an increasing concern, and may be a key element for encouraging workers back into the office. The Workplace Wellness Study conducted by Future Workforce found that workplace environment is more important to employee satisfaction, engagement and productivity than most organizations realize. 67% of employees said they are more productive in workplaces that promote a healthy environment. One-third said they lose at least an hour of productivity each day due to office environments that don’t support their daily health. Beyond the inherent flexibility of underfloor air conditioning systems, they also offer high levels of energy efficiency, sustainability, and air quality. As there is no ductwork with an underfloor system, individual zones operate at very low-pressure encouraging energy efficiency. AET’s systems have helped attract LEED and BREEAM and other Green Building points, and can provide up to 30% savings in energy costs and a 29% reduction in C02 emissions when compared to ceiling systems. Cost savings Cost savings are also a key concern for everyone in the post-COVID world, and the flexibility and economy of an underfloor system across the lifetime of a building is increasingly attractive. The British Council for Offices (BCO) indicates that underfloor air conditioning can offer dramatic savings in overall cost, but it requires a co-ordinated team approach to achieve the optimum result. The flexibility and economy of an underfloor system across the lifetime of a building is increasingly attractive In the past the only way to reduce ceiling-based HVAC costs has been to reduce the specification and downsize plant, or reduce flexibility by increasing the size of terminal outlets and reducing numbers. However, these solutions often result in increased complaints of end-users about draughts and noise, which necessitates a costly and environmentally unfriendly re-design. Ceiling-based systems also demand service and maintenance from within the work space, from the simple task of changing filters in fan-coils or cassettes, to more complicated reconfigurations of pipework and ducts to suit a new layout below. Not only do these refits mean significant hidden cost, but they also cause disruption, and have a high risk of damage from condensate leakage. Construction Considerations In order to maximize the benefits of underfloor air conditioning, it must be introduced into the overall design philosophy at an early stage. When incorporated into the overall building design, savings can be made to curtain wall costs, all other height-related savings such as elevator shafts, columns, stairwells, riser shafts, and vertical services such as mains pipe-work and electrical risers. The Swedish National Pension Fund has reported overall cost savings of between 5% and 7% in buildings using underfloor air conditioning. In order to maximize the benefits of underfloor air conditioning, it must be introduced into the overall design Good quality underfloor air conditioning systems are similar in price to conventional good quality fan coil systems, but underfloor systems also reduce the cost of construction and offer tax advantages. The average office building costs in UK are in the region of £1000 to £2000 per square meter. Therefore, a 5% saving in overall cost could range from £50 to £100 per square meter. The average cost of any AC system is in the region of £120 to £200 per square meter, and so an overall saving in construction equates to something in the region of 50% of the AC system. As we move forward into 2021 and beyond, commercial construction is going to require sustainable and cost-effective design. With so many benefits, it is clear why so many in the construction industry are now turning to underfloor air conditioning solutions.

Inverter Maintenance For Aircon Engineers
Inverter Maintenance For Aircon Engineers

Inverter driven air conditioning is more energy efficient, cheaper to operate and more profitable to install than its non-inverter driven equivalent. Here Neil Ballinger, head of EMEA at automation parts supplier EU Automation, explains how HVAC engineers can maintain the inverters in their customer’s aircon units. Do you remember cross country at school? It was exhausting; miles of seemingly pointless jogging and sprinting and, if the teacher was not looking, walking. If you were unlucky enough to be born before modern safeguarding measures were introduced, it probably also meant getting lost in the nearest woods.Why isn’t every installation an inverter driven unit, instead of the traditional single stage or dual stage models? My PE teacher, who seemed particularly vicious at the time, but in retrospect just knew about sports science than most, used to make us do something called fartlek as well. This meant long distance runs, incorporating elements of speed training by mixing up sprints with jogs and walks. The worst bit was starting to run again after a walk. That is exactly how the motor in your customer’s air conditioner feel if the units you fit are not inverter controlled. The motor has to act just like a runner doing fartlek — it sprints continuously, operating at full speed until the thermostat tells it the room is cool, then it stops. When the room gets warm, it starts again, powers immediately up to full speed and repeats the process indefinitely. Just like a teenage cross-country runner, it is the starting and stopping that is the tough bit. Furthermore, the unit probably doesn’t have to run at full speed to keep the room at the correct temperature, if the motor were inverter controlled it would speed up and slow down as the temperature fluctuates. Why isn’t all aircon inverter driven? We all know that inverter driven aircon is better than its non-inverter driven cousins. It can provide heating as well as cooling and the lifetime cost of use is less for the customer — because their energy bills stay low. The cost of installation is also higher because it is a more complex job, so it works out better for the contractor. It’s a win-win. The research firm Technavio even lists it as one of the key technologies driving growth in the HVAC market in its annual reports every year. So, the only question is, why isn’t every installation an inverter driven unit, instead of the traditional single stage or dual stage models?When contractors contact EU Automation to buy automation parts, for the units they maintain, they have given us another reason: maintenance Cost is a factor, but when contractors contact EU Automation to buy replacement motors and inverters, and other automation parts, for the units they maintain, they have given us another reason: maintenance. As HVAC engineers, we are not necessarily specialists in power electronics, and this makes inverter maintenance daunting. Microcontrollers and IGBTs (Insulated Gate Bipolar Transistors) are not beyond us by any means, but they can be intimidating. Personally, I would back an electrical or heating engineer over an electronics specialist in a problem-solving contest all day long; but that doesn’t solve the problem at hand. Furthermore, while we are experts in air conditioning brands, and know our Daikins and Grees from our Mitsubishis and Fujitsus, we don’t necessarily have contacts at the inverter manufacturers. Amtech, Danfoss, Vacon and Yaskawa are all names we know, but the local dealer for any of them is probably not in your phone book. This is especially true if the unit you need is from a first-generation inverter driven aircon unit and well over a decade old. While we are experts in air conditioning brands, and know our Daikins and Grees from our Mitsubishis and Fujitsus, we don’t necessarily have contacts at the inverter manufacturers Maintenance techniques While inverter maintenance can be daunting, it isn’t difficult. The tools you will need most often are nothing more than a rag and a spanner, while the more esoteric kit is stuff you probably carry anyway, a laptop, vacuum and a Fluke meter. Before you start, remember that while we tend to refer to an inverter as an inverter, the manufacturers themselves, and many of the sources of information online, often refer to them as VSDs (Variable Speed Drives), VFDs (Variable Frequency Drives) or just plain old drives. As a result, when you are searching online for a video to explain something, it’s worth using all three of those terms, alongside the inverter manufacturer’s name and the problem to make sure you get the right result.While inverter maintenance can be daunting, it isn’t difficult When you do move on to maintenance, step one is simple; make sure that the unit is free of dust. This is as easy as vacuuming the heatsink with an ESD (Electrostatic Discharge) vacuum cleaner when you perform routine maintenance or investigate a problem. While you are checking for build up of dust and daily grime, check the filters. They will probably have to be replaced during annual maintenance, but high use might mean they need to be replaced more often. The control panel itself should be well ventilated and free of dust as well, if it isn’t it can overheat, which is the number one cause of inverter damage and the most common reason contractors contact us for replacement units. Before you put your vacuum and duster away, you should make sure that the inverter unit’s location is clean and as sheltered from the elements as possible. Because it’s normally situated on a roof, it’s not going to be perfect, but the units are designed to take a limited battering. That doesn’t mean it’s okay for them to be covered in leaves, surrounded by rubbish or immediately beneath the guttering outlet though! Before you put your vacuum and duster away, you should make sure that the inverter unit’s location is clean and as sheltered from the elements as possible Get out the spanner Once you’ve finished these steps, you are done with dusting for now, it’s time to get out your screwdriver and your spanner. Step one is to make sure the fans on the inverter are operating normally, without noise and with nothing blocking their rotation. The fan keeps the internal components running effectively, just as it does on PC, and if its function is impaired the capacitors will overheat and the inverter will fail.When you install or maintain an inverter on an air conditioning system, it is a sensible precaution to back up the drive parameters to your laptop The next job is to grab your spanner and make sure the power terminals are on tight. Loose connections cause arcing, overheating and even melting of components and are easily checked during any kind of maintenance and repair. While we are still in the realms of the work your apprentice can do with their eyes closed, you should also make sure that the inverter’s removable LCD control pad is stored sensibly and not continually attached to the drive. If it remains attached, there is a chance the display will stay on permanently, which means that when you need it to diagnose a problem, it will probably already be burnt out. Break out the laptop When you install or maintain an inverter on an air conditioning system, it is a sensible precaution to back up the drive parameters to your laptop. It takes minutes and is normally done by using the removable LCD control. In fact, it’s often as simple as selecting ‘PARs’ and then ‘BACKUP’ from the menu. If you struggle, there are lots of videos on YouTube, like this one, which explain the process for each drive. As a result, if the inverter ever does need replacing, you can whip out your backed up parameters and order a new or refurbished one easily, before reloading the parameters to the replacement and getting up and running in no time. Your customers will think you are a power electronics genius, as well as a HVAC expert, and they will be loyal for life; especially of you save them on a hot day! If you follow these simple measures, you will find that the inverters in your customer’s air conditioning units last much longer and no motors will have to run the equivalent of a cross country, thanks to a lack of inverter control.

Latest Honeywell Home news

2020 Rewind: Highlighting Sustainability In The Age Of Climate Change
2020 Rewind: Highlighting Sustainability In The Age Of Climate Change

Sustainability and environmental impact are core issues of the HVAC market in 2020 or any year. During the last year, HVACinformed.com has addressed multiple facets of sustainability in some of our most popular articles. This retrospective will highlight some of the sustainability articles published during 2020 at HVACInformed.com. An HVACInformed.com Expert Panel Roundtable commented on various aspects of sustainability, including the responsibility of HVAC manufacturers to develop more sustainable, energy-efficient products that can reduce a building’s reliance on fossil fuels. Energy consumption pattern Honeywell has launched a platform that incorporates newer technology. Combining self-learning algorithms with building automation, Honeywell Forge Energy Optimization is a cloud-based system that analyzes a building’s energy consumption pattern and adjusts its settings. Heat networks, or district heating, are becoming an ever-greater part of the industry’s involvement Pete Mills of Bosch Commercial & Industrial outlines how cities are using ‘heat networks’ to achieve carbon emission targets in the United Kingdom. Heat networks, or district heating, are becoming an ever-greater part of the industry’s involvement in larger-scale schemes. The ability to help the decarbonization of heat both now and in the future has made them an attractive solution to the new-build sector, as well as those undergoing deep renovation works. Centralized heat generator Generally, heat networks are defined as a system of supply pipes with a centralized heat generator (Energy Center) that serves multiple domestic or non-domestic dwellings. These are usually in different buildings, but sometimes within a single large building like an apartment block or a university campus. Some U.S. cities are taking the lead to make building performance standards mandatory, thus providing additional incentive for customers to invest in new, more efficient and climate-friendly HVAC technologies. New York City has deployed its Carbon Mobilization Act, which will cut six million tons of CO2 annually by 2020. Washington D.C. adopted the first Building Energy Performance Standard, which will reduce energy use in buildings by more than 20%, thereby lowering carbon dioxide emissions by a million tons annually. Improving environmental performance Newer buildings tend to be designed to be ‘green’, but what about older existing buildings, which still represent the largest share of environmental impact? There is more work to be done in the retrofit sector; and improving environmental performance of older buildings often involves ‘deep retrofits’ that are costly and impact multiple factors inside a building. In the COVID-19 era, there is also growing concern about needs such as circulating outside air, increasing humidity, and improving filtration systems even as older buildings seek to become greener. The consistent theme is a need to work toward better-designed, more energy efficient and healthier buildings The consistent theme is a need to work toward better-designed, more energy efficient and healthier buildings. The California Air Resources Board (CARB) is moving forward with rulemaking that sets limits and deadlines to decrease the use of refrigerants with global warming potential (GWP) in the commercial refrigeration market and in the residential and commercial stationary air conditioning equipment markets. Air conditioning systems California regulations are widely expected to influence the direction of other states seeking to regulate GWP of refrigerants. The addition of biodiesel lowers the carbon content (and thus the environmental impact) of heating oil. The U.S. Environmental Protection Agency says biodiesel reduces greenhouse gas emissions, including nitrogen oxide. The process of making biodiesel from renewable and organic sources also boosts the environmental profile. The Wyss Institute at Harvard University has developed an evaporative cooling system that uses a specially coated ceramic to cool air without adding humidity. Researchers say the approach can yield more affordable and environmentally friendly air conditioning systems for the future.

Honeywell Unveils Honeywell Electronic Air Cleaners With UV Systems And New Line Of IAQ Sensors
Honeywell Unveils Honeywell Electronic Air Cleaners With UV Systems And New Line Of IAQ Sensors

Honeywell has announced expanding its holistic Healthy Buildings Air Quality offering to help improve and measure commercial building indoor air quality (IAQ) with the introduction of Honeywell Electronic Air Cleaners (EACs) with UV Systems and a new line of indoor air quality (IAQ) sensors. Honeywell Electronic Air Cleaners Honeywell EACs with UV help remove impurities from the air as well as provide filtration and disinfection, without significantly impeding air flow. The new IAQ sensors include Honeywell's Particulate Matter Sensor PM 2.5, Total Volatile Organic Compound (TVOC) Sensor and All-in-One IAQ Sensor. Air quality is essential to a healthy building. It can impact occupant health and productivity, energy efficiency and real estate value. The quality of air is affected by the presence of pollutants in the indoor environment that may cause harm. Facilitating cleaner and safer buildings Building owners are looking for ways to create safer, cleaner air to instill occupant confidence" When IAQ is poor, occupants can experience a drop in productivity as well as adverse health effects such as asthma and bronchitis. The concentration of some pollutants can be two to five times higher indoors than typical outdoor concentrations. "More people are paying attention to air quality and the importance of creating healthier environments in the spaces we use for work, school, entertainment and travel," said Manish Sharma, Vice President and Chief Technology Officer, Honeywell Building Technologies, adding "Building owners are looking for ways to create safer, cleaner air to instill occupant confidence as well as attract future commercial tenants." Sensing technology aids in enhancing IAQ Manish added "We're talking to hundreds of customers who are navigating these concerns right now and working with them to update their building systems to better protect occupants. It doesn't always have to be a complicated process of ripping out old equipment and starting from scratch. It can be a straight-forward HVAC upgrade with modifications that address specific concerns and minimize potential side effects.” He further stated, “Sensing technology is an important tool to identify opportunities for adjustments, only when you can measure particles can you properly control them. Adding a system like Honeywell's can improve a building's air quality by filtering particulates and reducing contaminants." Boosting indoor air flow and quality Honeywell EACs use an electric charge to help remove solid and liquid impurities from the air without impeding air flow. The UV System emits ultraviolet light to damage the DNA structure of certain microbes at the cellular level and inactivate various viral, bacterial and fungal organisms – thus providing filtration and disinfection in one system. Ideal for retrofits, property upgrades and new construction alike, Honeywell EACs with UV Systems can be installed inside a commercial HVAC system, without the need to remove old equipment and install a new system entirely. Honeywell EACs can help save energy, while providing a better heat exchange and can pay for itself with the savings. Enhancing IAQ without changing HVAC infrastructure Honeywell IAQ sensors help owners better determine a building's environmental state and air quality status The new Honeywell IAQ sensors help building owners better determine a building's environmental state and air quality status and allow them to take corrective actions through the building management system (BMS) without a need to rip and replace existing sensors. It is possible to add new sensors to existing temperature, humidity and CO2 sensors currently in place within the building or deploy new All-in-one IAQ sensors to cover multiple sensing requirements in one device. Healthy Buildings solutions Honeywell EACs with UV Systems and new IAQ sensors are the latest in a suite of offerings from the company that focus on creating healthier buildings. Honeywell recently announced upgrades to the Pro-Watch and MAXPRO Network Video Recorders and Video Management Systems solutions, which use analytics and artificial intelligence to identify if building occupants are complying with guidelines around social distancing and wearing masks. Honeywell's Healthy Buildings solution help building owners improve the health of their building environments, operate more cleanly and safely, comply with social distancing policies, and help reassure occupants that it is safe to return to the workplace. These Honeywell solutions are part of a comprehensive effort among Honeywell's businesses to come together to quickly develop solutions that are helping important sectors of the global economy recover.

Honeywell Applies Machine Learning To Boost Energy Efficiency Of Buildings
Honeywell Applies Machine Learning To Boost Energy Efficiency Of Buildings

Machine learning provides a tool to lower energy costs in a building, and Honeywell has launched a platform that incorporates the newer technology. Combining self-learning algorithms with building automation, Honeywell Forge Energy Optimization is a cloud-based system that analyzes a building’s energy consumption pattern and adjusts its settings. “We can help building portfolio owners fine-tune their energy expenditures to drive efficiencies and create more sustainable practices,” says David Trice, Vice President and General Manager, Honeywell Connected Buildings. Autonomous building solutions Honeywell says the autonomous, closed-loop building solution may deliver double-digit energy savings while decreasing a building’s carbon footprint. It can be implemented without significant capital expense or changes to a building’s current operational processes. The system autonomously and continually optimizes a building’s internal set points across hundreds of assets every 15 minutes by evaluating whether the HVAC system is running at peak efficiency.  When analyzing when to make an adjustment, the system considers factors such as time of day, weather, occupancy levels and other data points. The system considers factors such as time of day, weather, occupancy levels Honeywell Forge Energy Optimization calculates its decisions 96 times per 24-hour period in every building in a portfolio. Deployment is a simple plug-and-play process with no changes needed to business mechanics. Systems do not need to be rip-and-replaced. Results of the technology The technology has been demonstrated in a pilot at Hamdan Bin Mohammed Smart University in Dubai, United Arab Emirates, achieving an initial 10% energy savings. The pilot achieved the extra savings over and beyond what was achieved earlier in the highly smart, energy-efficient building with fully connected lighting, cooling, building management, power and efficiency control optimized based on real-time occupancy. The pilot also uncovered local control issues with the chiller plant and fresh air handling unit that were not adjusting to set points. “Honeywell Forge [was able] to drive further energy savings beyond our achievable optimization with the techniques we [had],” says Dr. Mansoor Al Awar, HBMSU’s Chancellor. The university is collaborating with Honeywell to support the advancement of artificial intelligence (AI) and machine learning to drive operational efficiencies. Energy consumption in commercial buildings is significant. Buildings and buildings construction combined are responsible for more than 36% of global final energy consumption and nearly 40% of total direct and indirect CO2 emissions, according to the International Energy Agency (IEA). Energy demand in these sectors continues to rise, driven by improved access to energy in developing countries, greater ownership and use of energy-consuming devices, and rapid growth in global buildings’ floor areas. Opportunities for energy saving It is a market where the potential impact of greater efficiencies is huge It is a market where the potential impact of greater efficiencies is huge. Heating, ventilation and air conditioning often presents the largest opportunity for energy savings in a commercial building. “Buildings aren’t static steel and concrete – they are dynamic ecosystems and their energy needs fluctuate based on ever-changing variables like weather and occupancy,” says Trice. “We are evolving building operations far beyond what would be possible even with a robust team of engineers and the rules they code in their building management system.”

vfd