Energy Recovery Ventilators (ERV) - Expert Commentary

Maintain Excellent Indoor Air Quality With HVAC Upgrades
Maintain Excellent Indoor Air Quality With HVAC Upgrades

Indoor air quality (IAQ) has become an area of emphasis among those in the HVAC industry and on a national level. Homes, offices, schools, and everything in between are being reevaluated with the ambition of having the best IAQ possible. Maintaining a high level of air quality is an important factor in encouraging a cleaner indoor breathing environment, which can lead to the better overall health and well-being of our families and communities. Clean air is especially important now with more waves of COVID-19 hitting and the onset of seasonal sicknesses like the flu and colds on the horizon. Now is the time for HVAC manufacturers to implement solutions to make returning to everyday life more seamless as we venture back out into the world.  Mechanical HVAC equipment offers the perfect opportunity to improve IAQ in commercial facilities. Facility managers choosing to opt for enhanced air quality should focus on three areas for unit upgrades: controlled ventilation, dehumidification, and filtration. While there are countless minor changes one can make to improve IAQ, such as using exhaust fans to increase circulation, HVAC upgrades are the best and most efficient option to give building occupants the IAQ they need for maximum comfort and safety. Out with the old, in with the new Ventilation and the ability to control it are a necessity in maintaining a high level of air quality. Being able to control how much outdoor air circulates inside gives facility managers a tool to not only improve IAQ but also create consistent comfort for the building occupants.    Controlled ventilation creates an avenue to help occupants breathe easier, feel better and be more proactive Outdoor air tends to be cleaner than indoor air, so bringing air in from outside is vital. Controlled ventilation creates an avenue to help occupants breathe easier, feel better and be more proactive in your space. With the proper HVAC upgrades, you can make sure the ventilation rate is controlled in a manner that will be most beneficial and effective for specific situations. By pushing indoor air out and bringing new outdoor air in, you are effectively limiting the number of harmful pathogens from the commercial space. Limiting particles in the air It is important to make sure your HVAC system is running smoothly and efficiently, especially during a time like now when airborne pathogens are prevalent. With COVID-19 continuing to affect people, maintaining excellent IAQ is certainly a priority.  The removal of particulates from indoor air is a necessary process for HVAC systems. The ASHRAE recommendation for filtration is now MERV 13, which has increased from MERV 8 or MERV 10 in past years. The ability of the MERV 13 filter to grab smaller particulates floating in the air is a great advantage in maintaining IAQ. With an upgrade in HVAC filter equipment, dust, smoke, and other particulates can be reduced and greatly benefit air quality. Finding the humidity sweet spot If you live or work somewhere humid, you understand how miserable it can be outside, especially in warmer months. Even with temperature-controlled air inside, humidity can be present indoors. This can lead to not only an uncomfortable feeling inside but also a potentially harmful breathing environment. Mold, mildew and organic growth can all result from inadequate moisture removal.  With the proper equipment, your indoor air will be less humid, leading to a continued high-level IAQ That is why dehumidification is such an important aspect of keeping us comfortable and safe inside. The sweet spot when it comes to relative humidity is between 40 and 60 percent. If your HVAC can handle higher latent loads associated with outdoor air, you should not experience the sticky feeling that will come along with a humid space. More importantly, dehumidification assists in lowering the chances of mold or organic growth appearing indoors. Hidden mold or mildew can cause issues that may affect your respiratory system. With the proper equipment, your indoor air will be less humid, leading to a continued high-level IAQ. Upgrading your HVAC As we continue to learn more about the benefits of maintaining excellent IAQ, it is clear HVAC upgrades are part of the process. Having clean and fresh air in our indoor spaces has many advantages, especially when occupants are confined to common areas. Safety and well-being are priorities when dealing with the air we breathe. Efficiency makes a difference in IAQ performance, so making sure you have the most reliable HVAC equipment is a great way to improve indoor air quality and maintain an excellent IAQ. IAQ directly impacts the health, comfort, and even some of the learning outcomes of occupants in a space Pulling contaminants from the air through filtration, removing moisture with dehumidification, and bringing in fresh air from the outside by ventilation are all solutions for maintaining a high IAQ. It is through proper equipment and upgrades that we can continue to keep occupants safe and comfortable as best we can. IAQ directly impacts the health, comfort, and even some of the learning outcomes of occupants in a space. Improving each of these factors is important in creating a comfortable indoor environment that encourages an increase in fresh and clean air.   

What We Breathe And What We Feel: Designing Today’s Homes For Optimal IEQ
What We Breathe And What We Feel: Designing Today’s Homes For Optimal IEQ

Most people spend about 90 percent of their time indoors. For home owners, indoor environmental quality (IEQ) is the most meaningful differentiator between ‘high-performance’ and ‘code-built’ homes. Indoor environmental quality  IEQ describes how well the indoor environment promotes occupant comfort and health. The components of IEQ include thermal comfort, indoor air quality (IAQ), sound and lighting. Requirements for optimal IEQ vary per occupant and household, due to individual health needs and levels of sensitivity to sound, light, color and temperature. Let’s discuss how to control the indoor environment for IEQ with particular attention to how heat pumps can help improve thermal comfort and IAQ. Start with the Building Envelope A healthy and comfortable home with optimal IEQ can be considered a single system A healthy and comfortable home with optimal IEQ can be considered a single system, which consists of interdependent parts and sub systems. Mechanical system designers give careful consideration to how components perform, in relation to each other and other variables. Code requirements for tighter building envelopes, improved windows, increased insulation values and more efficient appliances have reduced energy use intensity (EUI), since the 1970s, but also provide the foundation for better performing homes. Optimal IEQ requires control over how air, thermal energy (heat) and moisture enter, exit and flow through the building. Limit Thermal Bridging A thermal bridge is an area that has higher thermal conductivity than the surrounding materials, creating a path of least resistance for heat transfer. Thermal bridges reduce energy efficiency and create health and comfort challenges. When the components of a building assembly are made colder than the air in those spaces, there is the potential for condensation. This can reduce the durability of the building and create potential health hazards, such as mold. When designing high performance homes for maximum efficiency, health and comfort, choose techniques and products, like continuous exterior insulation and windows with low U-values, so as to eliminate limit thermal bridging. Heat Pumps and Thermal Comfort Comfort is a subjective experience, affected by variables, including the occupant’s age, level of physical activity and where they were raised. ASHRAE Standard 55 and the Predictive Mean Vote (PMV) concept use five factors to help builders design comfortable environments that are specific to occupants: Operative temperature Air speed Relative humidity Metabolic rate Occupant clothing High performance heat pump with variable speed compressor A high performance heat pump with a variable speed compressor can meet the challenge of subjective comfort, while improving the home’s energy efficiency. Heat pumps use the natural movement of thermal energy from hotter objects to colder objects, in order to heat or cool the home’s zones. In heating mode, the outdoor unit expands refrigerant gas to make it colder than the ambient air, enabling the unit to extract thermal energy from the outdoor air and transfer it via refrigerant lines to the indoor unit, conditioning the zone. Using this method, a heat pump can provide more energy for heating than it consumes in electricity. Even at low ambient temperatures, modern, all-electric heat pumps can be up to three times more efficient than conventional electrical-resistance systems. Heat pump systems with individually-controlled indoor units Heat pump systems with individually-controlled indoor units for each zone create opportunities to customize comfort, for specific occupants and activities (e.g., cooking, exercise, sleep). Using multiple independent units and compact duct runs offers more flexibility to design, according to occupant preferences. If the cost of changing ductwork in an existing house is prohibitive, ductless indoor units may be the solution. Performance can be improved by applying a heat pump system with a compact duct design Compact Duct Design for Heat Pumps Performance can be further improved by applying a heat pump system with a compact duct design, instead of a large, conventional duct design. During heating season, thermal energy is lost as conventional systems push conditioned air through long duct runs in unconditioned spaces. This heat loss through ducts can result in comfort issues and poor energy performance. In compact designs, duct runs are shorter and more centralized, with ducts running to interior walls and blowing toward exterior walls. With shorter duct runs and less opportunity for energy loss, contractors can install smaller indoor units with smaller and quieter fans that use less energy. Ductless indoor units for heat pump systems, such as recessed ceiling cassettes or wall mounts, don’t require ducts. Ducted air handlers and horizontal-ducted units are compact, making it easier to fit all the HVAC equipment and ductwork within the envelope. Indoor Air Quality Indoor Air Quality (IAQ) is particular to occupants, but less subjective than comfort Indoor Air Quality (IAQ) is particular to occupants, but less subjective than comfort. The primary objective of IAQ design is keeping pollutants from endangering occupant health. Contaminants of concern include particulate matter 2.5 (PM 2.5), acrolein, formaldehyde and volatile organic compounds (VOCs). PM 2.5, for example, can contribute to asthma, sinus congestion, coughing, skin rashes, brain plaque and cognitive issues, including headaches and sleep disturbances. Source control is the foundation of IAQ. In designing healthy homes, builders should avoid materials that off-gas formaldehyde and VOCs to limit the infiltration of pollutants. All-electric heat pumps align with the trend of limiting or eliminating the hazards of on-site fossil fuel combustion in healthy homes. After addressing source control, builders can apply methods and products for filtration, elimination and dilution. Whole-home Filtration The Minimum Efficiency Reporting Value (MERV) uses a scale of 1-20 to describe how effectively a filter can capture particles of a given size. A High Efficiency Particulate Air Filter (HEPA) with a MERV range of 17 to 20 and can remove 99.97% of airborne particles as small as 0.3 micrometers. When determining the level of filtration required, the impact of the static pressure drops associated with increases in the efficacy and depth of pleated filters considered. The duct design and Manual D calculations must account for pressure drops which cause air to move more slowly. Homes with multiple zones may have a mix of indoor unit styles, including ductless and ducted units. If a home owner requires higher filtration levels, HVAC contractors can install a complementary system purpose-built for whole-home filtration. High performance ventilation systems, ERVs and HRVs Healthy and comfortable homes use high performance ventilation systems to introduce fresh outdoor air. An energy recovery ventilator (ERV) or heat recovery ventilator (HRV) provides conditioned ventilation air to dilute pollutants and remove stale air, without significantly increasing heating or cooling loads. Humidity-balanced, conditioned fresh air may be directed to the air handler or ducted directly to zones served by ductless units. With modern construction methods, mechanical systems, knowledge of human physiology and help from immutable physical laws, HVAC contractors can help produce homes purpose-built for occupant comfort and health.

Training Is The Key To The UK Government’s Heat Pump Promise
Training Is The Key To The UK Government’s Heat Pump Promise

Forget the fact that heat pump installations in the average home could cost several thousand pounds more than a conventional gas boiler and that fully insulating those homes will add even greater cost to the homeowner. It’s not really the cost issue that could be the only potential bump in the road on the way to the target set by the UK Government, because a more pressing problem to solve will be the shortage of trained ‘green’ heating engineers that will be the key to delivery of the plan. Gas boiler production I’m sure I’m not alone within the industry in adding my support to any drive that leads to a more effective use of environmentally responsible sources of energy for home heating. And following the news that ministers are currently discussing a cut off date of 2035 for all domestic gas boiler production, with an earlier 2025 ban on their installation in new homes, it is encouraging to think that technologies with which we in the industry have been working for a decade or more, will finally become the norm, rather than the green exception. However supportive I and colleagues in the sector might be, we should not shy away from challenging the Government on the delivery of the targets it has announced, because currently we haven’t heard enough in the Government’s Heating and Buildings Strategy about the market’s skills shortage. Heat source technologies At Ameon we’ve been working with green technologies for over a decade, on large scale public sector The truth is that there are simply not enough heating engineers currently who are experienced in the installation of alternative heat source technologies, such as ground or air source heat pumps, and given that tens of thousands of new or re-skilled engineers will be required if the Government’s plan to install 600,000 heat pumps per year by 2028 is to be achieved, then the drive needs to be supported by the associated training provisions to help it meet its goal. At Ameon we’ve been working with green technologies for over a decade, on large scale public sector and residential developments but I feel that aside from building services infrastructure companies like ourselves and others in our sector, there isn’t currently a large enough skills base and therefore the infrastructure needs to be put in place to be able to train enough people to carry out the installation program. Low carbon technologies This could be more of a factor in the achievement of 2035 target aspirations, than even the potential public reluctance to embrace the technology for cost reasons. Whilst specialists in our sector have teams of qualified heating and ventilation engineers who are hugely experienced in low carbon technologies, it has to be acknowledged that their experience and skill set has taken considerable time and investment to develop; therefore I hope the Government hasn’t underestimated the vital importance of training. This could be more of a factor in the achievement of 2035 target aspirations You can’t simply ask domestic heating engineers, who are used to fitting conventional gas boilers, to switch to installing ground or air source heat pumps overnight. There are significant differences in the science and the technology, together with the requirement by law for engineers to be F-gas registered, proving that they are qualified in the safe handling of fluorinated refrigerant gases (F-gas), which are ozone depleting substances crucial to the heat pump delivery process. Conventional gas boilers Then, there’s the need for engineers to understand how to design low temperature water systems and avoid such things as Legionella bacteria creeping into the system. There is much more to learn for someone used to installing boilers that heat water to a temperature to pasteurize it, because the public health element is a key factor too. So there needs to be significant retraining and, of course, the time to create the infrastructure to deliver the training. The other related issues, such as where training would be delivered and who funds it can be more easily addressed. After all, the Chancellor has protected UK businesses at the drop of a hat in the midst of a pandemic, and the country has, in short time, created a hugely efficient mass-vaccination program; proving that anything is possible. Reducing carbon emissions Steve Baker, has warned of public anger if all implications of the Government’s plans are not explained Currently discussions in Whitehall include such ideas as homeowners being required to install ‘green’ heating before they can sell their property, or levying a surcharge on gas boilers to subsidize production of heat pumps: although no firm decision has yet been taken. It is reported that former Conservative minister, Steve Baker, has warned of public anger if all implications of the Government’s plans are not explained fully to homeowners, which is why I and others will add our voices to the many questions that really need to be answered. That doesn’t mean we in industry are not fully supportive of the Government’s aspirations. The public too appears to be broadly behind this move to reduce carbon emissions, particularly as gas boilers account for a percentage of CO2 produced annually; therefore it is an important area to focus upon if ‘net zero’ carbon emissions by 2050 are to be achieved. Newly trained engineers Roughly 85% of UK homes currently rely on gas for heating, which is around 25 million homes, so the scale of the change required is immense. Even if the UK had the qualified engineers to start from day one, which it doesn’t, the targets are ambitious to say the least. It is my view that investment in training has to be at the heart of the Government’s planning. That could be delivered on the job, in the classroom, or, as has become the norm during lockdown, via online platforms such as Teams, Zoom or Skype. So if the will is there and the resources are in place to fund training, the method is the easier part of the process. What’s less certain is whether the army of re-skilled and newly trained engineers can be deployed quickly enough to achieve the target set. The clock is ticking...

Latest Carrier Corporation news

Sila Services LLC Acquired Fahrenheit HVAC To Deliver Exceptional Home Comfort Solutions
Sila Services LLC Acquired Fahrenheit HVAC To Deliver Exceptional Home Comfort Solutions

Sila Services LLC recently acquired Fahrenheit HVAC, adding Fahrenheit's commitment to reliably professional same-day HVAC repairs and installations to Sila's already impressive portfolio of companies. Fahrenheit has provided outstanding and affordable care to its customers for over three decades. Sila is an HVAC industry veteran, with an unwavering commitment to customer satisfaction, and has been delivering exceptional home comfort in heating, AC, plumbing and electrical services, throughout the Northeast and Mid-Atlantic, since 1989. Home comfort expert "By extending our reach and adding the highly trained Fahrenheit technicians' services to our already premier packages, we're taking Sila to the next level," said Lou Pellegrini, CEO of Sila. "We're extremely pleased to be welcoming the Fahrenheit HVAC family into ours and there's a reason we are both household names in the Southeastern Pennsylvania area. Because we treat your home like we treat our own – ensuring you have efficiently running systems and invaluable peace of mind." Sila's factory-trained and certified technicians serve over 500 homes a day With over 7000 ‘A’ ratings on Angie's List, earning its prestigious super service award for multiple years running, Sila is the complete home comfort expert. A preferred partner of Carrier, Google Nest, Lennox, Mitsubishi, Unico, and other manufacturers, Sila's factory-trained and certified technicians serve over 500 homes a day, with 100% satisfaction guaranteed every single time. Saving customers money Repairs: Dependable and prompt repairs that ensure customers never have to wait too long to get back to living life in comfort. Tune-Ups and Maintenance: Prevention is key to keeping heating and AC systems in peak shape, ready for extreme weather. Annual Sila tune-ups include a 15-point safety inspection and filter change. Maintenance plans keep systems running reliably and efficiently – preventing breakdowns and saving customers money. Replacements and Installations: When replacements or new installations are necessary, Sila helps its customers select the perfect solutions for the home or office that fit nicely into any budget with attractive financing. Go Green: For those considering greener options for heating and AC, Sila offers geothermal systems that use natural, sustainable energy from the ground.

Cosco Shipping Lines Adds Next-Generation, Active Controlled-Atmosphere EverFRESH Systems
Cosco Shipping Lines Adds Next-Generation, Active Controlled-Atmosphere EverFRESH Systems

Cosco Shipping Lines recently enhanced its refrigerated cargo fleet with next-generation EverFRESH® active controlled-atmosphere (CA) systems from Carrier Transicold. The high-performing systems enable perishable shipments to travel farther while retaining commodity quality. Carrier Transicold is a part of Carrier Global Corporation, the foremost global provider of healthy, safe, sustainable, and intelligent building and cold chain solutions.   Sustain product quality and extend shelf-life “The next-gen EverFRESH units will maintain the atmosphere at precise points to sustain product quality and extend shelf-life for a wide range of perishables,” said Suresh Duraisamy, Associate Director, Global Container Refrigeration, Carrier Transicold. “The systems provide the quality our customers have come to expect, with new technology that builds on the first-generation EverFRESH units’ robust design and proven performance, to propel their fleets into the future.” Features  Using active CA technology, the EverFRESH system: Optimizes the balance of oxygen and carbon dioxide (CO2) within a refrigerated container, slowing respiration and the natural ripening of the commodity inside Generates high-purity nitrogen to more quickly and responsively displace oxygen, rather than relying on cargo respiration alone to gradually reduce oxygen levels Maintains a positive air pressure within the container, making it far less sensitive to box leakage than other types of systems Feedback EverFRESH system’s active injection technology allows the container to be pre-charged with CO2 at the start of a voyage “The EverFRESH controlled atmosphere system from Carrier Transicold has a proven track record based on past units’ performance, and it allows us to handle a broader range of perishable commodities across the globe, and confidently protect and ship them to newer and further markets for our customers,” said Chen Yang, Manager of Sales and Marketing, Reefer Trade, Cosco Shipping Lines. Operation and function The EverFRESH system’s active injection technology allows the container to be pre-charged with CO2 at the start of a voyage and automatically add more over the course of the trip. Carrier Transicold is the only container refrigeration system manufacturer in the market today offering a CA system with an integrated option to add CO2 on demand.   The EverFRESH system is part of Carrier’s Healthy, Safe, Sustainable Cold Chain Program to preserve and protect the supply of food, medicine, and vaccines.

Carrier Announces Agreement To Acquire Nlyte Software To Strengthen And Expand Data Center Offerings
Carrier Announces Agreement To Acquire Nlyte Software To Strengthen And Expand Data Center Offerings

Carrier Global Corporation announced that it has signed an agreement to acquire Nlyte Software (“Nlyte”), a front-runner in Data Center Infrastructure Management (DCIM) software. Nlyte’s proven data center expertise will expand Carrier’s HVAC business’s access to the growing DCIM segment, complement its differentiated Automated Logic Controls business to create integrated customer solutions, and help fulfill its strategic focus on sustainable and intelligent solutions through increased recurring revenues. Carrier is the foremost global provider of healthy, safe, sustainable, and intelligent building and cold chain solutions. Authority Comments “Nlyte’s software and services, along with the expertise of its team, will enable Carrier to further develop our data center capabilities and bring enhanced services and solutions to Carrier’s broad, global customer base,” said Chris Nelson, President, HVAC, Carrier. “This is an excellent strategic fit and enables us to provide customers a premier offering of data center controls and infrastructure power management.” Nlyte will become part of ALC, Carrier’s building automation and controls business, within Carrier’s HVAC segment “This transaction strengthens and expands our data center offerings,” said Doug Sabella, CEO, Nlyte. “As a leader in the DCIM market, we will be able to offer new solutions and value-added customer services for HVAC equipment, building automation, controls, security and fire systems. With Carrier’s global footprint, Nlyte will be able to reach new segments and geographies.” Centralized management Nlyte helps customers manage their IT infrastructure and drives digital transformation of data centers. Its DCIM software provides centralized management of all data center resources, which helps organizations plan, view, and optimize their data centers for maximum energy efficiency and transparency. These outcomes have helped Nlyte enjoy a 98% customer retention rate.   Nlyte will become part of Automated Logic Corporation (ALC), Carrier’s building automation and controls business, within Carrier’s HVAC segment. Combining ALC WebCtrl building automation and Nlyte DCIM systems will provide data center customers a complete intelligent solution to further improve operational efficiencies. Completing acquisition Carrier expects to close its acquisition of Nlyte in the fourth quarter of 2021 subject to customary closing conditions. The terms of the transaction were not disclosed.

vfd