Energy Recovery Ventilators (ERV) - Expert Commentary

Training Is The Key To The UK Government’s Heat Pump Promise
Training Is The Key To The UK Government’s Heat Pump Promise

Forget the fact that heat pump installations in the average home could cost several thousand pounds more than a conventional gas boiler and that fully insulating those homes will add even greater cost to the homeowner. It’s not really the cost issue that could be the only potential bump in the road on the way to the target set by the UK Government, because a more pressing problem to solve will be the shortage of trained ‘green’ heating engineers that will be the key to delivery of the plan. Gas boiler production I’m sure I’m not alone within the industry in adding my support to any drive that leads to a more effective use of environmentally responsible sources of energy for home heating. And following the news that ministers are currently discussing a cut off date of 2035 for all domestic gas boiler production, with an earlier 2025 ban on their installation in new homes, it is encouraging to think that technologies with which we in the industry have been working for a decade or more, will finally become the norm, rather than the green exception. However supportive I and colleagues in the sector might be, we should not shy away from challenging the Government on the delivery of the targets it has announced, because currently we haven’t heard enough in the Government’s Heating and Buildings Strategy about the market’s skills shortage. Heat source technologies At Ameon we’ve been working with green technologies for over a decade, on large scale public sector The truth is that there are simply not enough heating engineers currently who are experienced in the installation of alternative heat source technologies, such as ground or air source heat pumps, and given that tens of thousands of new or re-skilled engineers will be required if the Government’s plan to install 600,000 heat pumps per year by 2028 is to be achieved, then the drive needs to be supported by the associated training provisions to help it meet its goal. At Ameon we’ve been working with green technologies for over a decade, on large scale public sector and residential developments but I feel that aside from building services infrastructure companies like ourselves and others in our sector, there isn’t currently a large enough skills base and therefore the infrastructure needs to be put in place to be able to train enough people to carry out the installation program. Low carbon technologies This could be more of a factor in the achievement of 2035 target aspirations, than even the potential public reluctance to embrace the technology for cost reasons. Whilst specialists in our sector have teams of qualified heating and ventilation engineers who are hugely experienced in low carbon technologies, it has to be acknowledged that their experience and skill set has taken considerable time and investment to develop; therefore I hope the Government hasn’t underestimated the vital importance of training. This could be more of a factor in the achievement of 2035 target aspirations You can’t simply ask domestic heating engineers, who are used to fitting conventional gas boilers, to switch to installing ground or air source heat pumps overnight. There are significant differences in the science and the technology, together with the requirement by law for engineers to be F-gas registered, proving that they are qualified in the safe handling of fluorinated refrigerant gases (F-gas), which are ozone depleting substances crucial to the heat pump delivery process. Conventional gas boilers Then, there’s the need for engineers to understand how to design low temperature water systems and avoid such things as Legionella bacteria creeping into the system. There is much more to learn for someone used to installing boilers that heat water to a temperature to pasteurize it, because the public health element is a key factor too. So there needs to be significant retraining and, of course, the time to create the infrastructure to deliver the training. The other related issues, such as where training would be delivered and who funds it can be more easily addressed. After all, the Chancellor has protected UK businesses at the drop of a hat in the midst of a pandemic, and the country has, in short time, created a hugely efficient mass-vaccination program; proving that anything is possible. Reducing carbon emissions Steve Baker, has warned of public anger if all implications of the Government’s plans are not explained Currently discussions in Whitehall include such ideas as homeowners being required to install ‘green’ heating before they can sell their property, or levying a surcharge on gas boilers to subsidize production of heat pumps: although no firm decision has yet been taken. It is reported that former Conservative minister, Steve Baker, has warned of public anger if all implications of the Government’s plans are not explained fully to homeowners, which is why I and others will add our voices to the many questions that really need to be answered. That doesn’t mean we in industry are not fully supportive of the Government’s aspirations. The public too appears to be broadly behind this move to reduce carbon emissions, particularly as gas boilers account for a percentage of CO2 produced annually; therefore it is an important area to focus upon if ‘net zero’ carbon emissions by 2050 are to be achieved. Newly trained engineers Roughly 85% of UK homes currently rely on gas for heating, which is around 25 million homes, so the scale of the change required is immense. Even if the UK had the qualified engineers to start from day one, which it doesn’t, the targets are ambitious to say the least. It is my view that investment in training has to be at the heart of the Government’s planning. That could be delivered on the job, in the classroom, or, as has become the norm during lockdown, via online platforms such as Teams, Zoom or Skype. So if the will is there and the resources are in place to fund training, the method is the easier part of the process. What’s less certain is whether the army of re-skilled and newly trained engineers can be deployed quickly enough to achieve the target set. The clock is ticking...

Reducing Your HVAC Carbon Footprint: How The Sector Can Become More Sustainable In The Journey To Net Zero
Reducing Your HVAC Carbon Footprint: How The Sector Can Become More Sustainable In The Journey To Net Zero

With ongoing efforts from governments across the globe to reduce carbon emissions and with an ever greater focus on sustainability, it is vital that the HVAC sector does its part in becoming more environmentally conscious. And, while there have been steps to become more sustainable, there is a huge amount that still needs to be done to make sure that many of the targets that have been set are attainable. In buildings, both large and small, industrial heating accounts for roughly two thirds of industrial energy demand and around a fifth of global energy consumption. Figures like this show the need to have efficient and environmentally-friendly HVAC equipment in place to make the crucial steps towards reducing the contributions these systems make to our carbon footprint. High energy consumption in construction sector A 2019 report by The International Environment Agency (IEA) showed that the buildings and construction sectors combined were responsible for over 30% of global energy consumption and nearly 40% of carbon emissions. This is indicative of the steps the sector needs to take to play its role in a more eco-friendly society, some of which are already underway. However, much more needs to be done if the UK is to reach its goal of reaching net zero carbon emissions by 2050. As we envisage what a post-COVID world might look like, businesses and governments are continuing to put sustainability and lower carbon emissions at the forefront of their planning and the HVAC sector is certainly no exception. But with change in the sector a daunting prospect, decision-makers often don’t know where to start. Smart Technology use in HVAC systems Smart HVAC uses sensors that integrate with a building’s automation system With the constant growth and greater deployment of smart technologies within the HVAC sector, this is certainly a way that systems can become more efficient. Smart HVAC uses sensors that integrate with a building’s automation system. These sensors then collect information about conditions throughout the building. Heat waves are now a far more common occurrence in the United Kingdom. The Met Office estimates they are up to 30 times more likely and will be a bi-annual occurrence by 2050. It is important that any uptake in HVAC usage doesn’t lead to a drastic increase in emission generation. This is one of the areas where smart systems will become crucial. Many scientists have been unequivocal in their sentiment that heat waves are a cause of greater emissions and expect temperature records in the UK and Europe to be broken more regularly, so sites will need to be equipped to handle these conditions. Regulating temperature with hand-held devices With wireless systems now much more commonplace, temperatures can be controlled easily from hand-held devices. With these new technologies, those managing the systems can also benefit from remote monitoring and maintenance, reducing the need to travel to the site for yet another environmental incentive. To accompany the smart systems, equipment including smart thermostats can be installed to maximize HVAC efficiency. Other smart systems available to businesses include smart furnaces and air conditioning units that are far easier to operate than their traditional counterparts. Reducing unnecessary ventilation While global temperatures continue to rise, air conditioning usage has increased and has contributed to greater levels of energy usage. A huge amount of needless emissions are generated by unnecessary ventilation, contributing heavily to heat loss and overall energy wastage. Recirculation of air is a traditionally lower energy cost method of retaining heat and keeping emissions low, however, we must be mindful of the risks associated with recirculating air. The risk of circulating diseases is negated somewhat with heat recovery ventilation, which both removes the risk of disease spreading and improves energy consumption. Efficiency performance of new AC units Air conditioning units in particular contribute significantly to a building’s energy consumption Air conditioning units in particular contribute significantly to a building’s energy consumption, equating to 10% of the UK’s electricity consumption and as such it is important that we bear in mind ways to counteract the emissions this creates. Global energy demand for air conditioning units is expected to triple by 2050, as temperatures continue to rise year on year. The efficiency performance of new air conditioning units will be the key, when it comes to ensuring that escalating demand does not equate to greater emissions. Another issue for suppliers and manufacturers to address is differing rates of consumption for AC units in different countries, with units sold in Japan and the EU typically more efficient than those found in China and the US. Modularization Modular HVACs have also become increasingly popular in recent years. Modular HVACs are responsible for heating, cooling and distributing air through an entire building, with their increase in popularity largely down to their greater levels of energy efficiency, cost effectiveness, flexibility and substantial ease of installation and maintenance. Modular HVACs can be tailored specifically for workspaces and they often allow work to be done on the systems without disturbing the workforce, achieved primarily through rooftop placement. Commercial workspaces are larger and often require differing needs to residential properties and can cater to a wide range of the specific requirements of work and commercial spaces. As we strive for lower carbon emissions, it seems that this trend will continue and will become a key area in reducing emissions that HVACs have traditionally generated. System maintenance and training To meet government and industry requirements, many new buildings will require HVAC systems that can be maintained simply in order to perform in a more energy efficient way. Many companies are looking at ways to become climate neutral and significantly reduce their footprint Many companies are looking at ways to become climate neutral and significantly reduce their footprint. Companies are following the likes of German-based company, Wilo Group, who have announced they are committing to sustainable manufacturing by developing a new carbon neutral plant and HQ in the next few years. Lowering carbon footprint As we continue to move towards an ever more environmentally conscious society, it will be of paramount importance for companies, governments and the public to think about ways in which we can lower carbon emissions. Smart technologies will certainly be at the forefront of this, negating many needless journeys and making it easier for industries to adjust settings and tackle issues remotely. Greater levels of training will help equip us with the tools to make sure we are best placed to reduce emissions and be more sustainable as a result. While the steps outlined above do show some progress and measures we can take, there is far more that we can do as a sector to significantly reduce HVAC’s carbon footprint and once we have moved beyond the impact of the COVID-19 pandemic, this will surely be at the front of industry leader minds.

Why Should Schools And Universities Invest In Indoor Air Quality?
Why Should Schools And Universities Invest In Indoor Air Quality?

The education field was faced with multiple challenges this past year. Not only did the COVID-19 pandemic bring the necessity of online learning, but it has also brought up necessary changes to physical schools and universities, when reopening time arrives. The health and safety of students, staff, and faculty has become a priority for directors of school operations, who have been working to properly adapt school facilities to this new reality we are facing. Ensuring health and safety of students Besides safety measures like the addition of hand sanitizers, reinforcing the use of masks and social distancing, these professionals were faced with an even bigger and more important issue: ventilation and airflow indoors. School facilities have many unique features that increase the concerns regarding indoor air quality. Occupants are usually very close together, considering that school buildings have four times as many occupants as office buildings for the same amount of floor space (EPA). Variety of pollutant sources According to the WHO, the virus can also spread in poorly ventilated and/or crowded indoor settings Other issues include tight budgets, the presence of a variety of pollutant sources (including specialty classrooms, like art, gyms, and labs), concentrated diesel exhaust exposure due to school buses in the property, and a large amount of heating and ventilation systems that may cause an added strain on maintenance staff. On top of that, schools usually have to worry about child safety issues, concerned parents, and wellbeing of faculty and staff. According to the World Health Organization (WHO), the virus can also spread in poorly ventilated and/or crowded indoor settings, where people tend to spend longer periods of time and aerosols particles tend to be suspended in the air, which leads to the importance of indoor air quality in classrooms. Importance of natural ventilation and HVAC systems Natural ventilation and HVAC systems are the basic methods to bring clean air indoors, however, schools that rely only on these methods of ventilation need to be aware of their potential limitations. HVAC systems, for example, should have regular maintenance checks and filter changes, in cases where the system is less sophisticated, schools need to add new forms of air purification to effectively mitigate airborne pathogens. Studies showing quality of air in US schools Studies have shown that low-standards HVAC ventilation systems may contribute to airborne diseases transmission due to low air exchanges rates, poor maintenance and lack of high-efficiency filters. For this reason, portable air cleaners are becoming more and more popular to create a healthy learning environment. EnviroKlenz, an indoor air quality company, conducted real-life setting studies to show the quality of the air in schools in different areas of the United States. The study measured the amount of particulate matter in classrooms, with and without the use of additional portable filtration systems, which allowed for comparison and analysis of the benefits a portable air cleaner can provide. National EPA standards for indoor particulate matter The study also compared the current data to the national EPA standards for indoor particulate matter (PM), in order to evaluate the performance of the EnviroKlenz Air System Plus. The IAQ meters focused on PM1, which is about 1 micrometer in size (70 times smaller than the diameter of human hair!). The systems ran in operational educational environments, with daily schedules being carried out as usual and results can be seen below. School directors of operations also must pay attention to the different technologies available in portable air cleaners. With the growth of the industry, new emerging technologies have come up, and there’s still lack of third-party testing to prove their efficacy. Other technologies, like carbon filters, do not work against airborne pathogens and may release harmful byproducts back into the environment. EnviroKlenz Air System Plus EnviroKlenz Air System Plus, which utilizes a patented earth mineral technology to capture pathogens, is at 99.9% efficiency The EnviroKlenz Air System Plus, which utilizes a patented earth mineral technology to capture virus, bacteria and other harmful pathogens, is at 99.9% efficiency and is complemented by a medical-grade HEPA filter and UV-C lights, was also tested against a carbon-based air cleaner in a classroom. As shown below, the carbon system struggled to keep consistency, with peaks and valleys throughout the day. Meanwhile, when the EnviroKlenz Air System Plus was turned on, the PM1 levels were steadily low for over 4 consecutive days. Deploying portable air cleaners in classrooms Adding a portable air cleaner to classrooms and common areas will increase air exchange rate and mitigation efforts, but the long-term benefits go beyond the pandemic. Studies have shown that good indoor air and ventilation rates are directly linked with students’ academic achievements and can increase performance. High CO2 levels in a school environment are also associated with lower average annual attendance and worse individual test performance. Other long-term benefits include reducing symptoms of those who suffer from respiratory diseases and creating a favorable environment not only for students, but also for teachers and staff; while bringing a sense of comfort and well-being to parents and the community. Combined benefits of air filtration, ventilation, and purification “When we’re operating more normally, maybe we’ll be able to cut down on some of the traditional flu-peaks that schools have, or cold peaks, that kids just bring into school, by managing the airborne virus and bacteria quality,” said Peter Twadell, Head of School at Birches School in the US, and an EnviroKlenz Customer. School officials need to consider the combined benefits offered by filtration, ventilation, and purification methods to create the healthiest environment possible. Thinking in a pandemic-conscious mindset, air quality has gained the recognition it deserves in creating a proper and healthy learning environment.

Latest Lennox news

Lennox Industries Unveils The Ultimate Comfort System™, Focused On Indoor Air Quality
Lennox Industries Unveils The Ultimate Comfort System™, Focused On Indoor Air Quality

Lennox Industries, a trusted brand for over 125 years, unveiled updates to a whole-home heating and cooling system that is already recognized as the best in the industry. The Ultimate Comfort System™ combines the best of the Dave Lennox Signature® Collection to create an unprecedented whole-home comfort system that seamlessly and intelligently works together to stay finely tuned to home and deliver consistently clean, perfect air. According to a new survey commissioned by Lennox, approximately 3-in-5 homeowners say they are prioritizing air quality in their home now more than they did a year ago, and 61% of homeowners say they are willing to spend money to improve the quality of air in their home. Effect of air quality “For many homeowners, the past year has reinforced the fact that air quality has a direct effect on our health and how we feel,” said Kim McGill, Vice President of Marketing, Lennox Industries. “With the Ultimate Comfort System, homeowners can feel confident that their family is receiving the highest level of indoor air quality imaginable through the quietest, most efficient system on the market.” The Ultimate Comfort System brings together the best products to achieve perfect air  Lennox has been in the pursuit of perfect air from the beginning, ensuring that the air in the home meets their exact comfort needs and is the healthiest and cleanest it can be. From the moment the Ultimate Comfort System is installed in one’s home, the system brings together the best products to achieve perfect air across four categories: consistent perfection, complete control, unmatched efficiency, and beyond quiet. Consistent Perfection Perfect air in a home is clean, healthy, precise, responsive, and in constant motion. It starts with variable speed, which leads to clean, precisely controlled air that is finely tuned to one’s personal degree of perfection no matter what room one is in. The SLP99V Variable-Capacity Gas Furnace, SL28XCV Air Conditioner, and XP25 Variable-Capacity Heat Pump keep air perfect by continuously circulating and making adjustments to the air. This ongoing movement ensures the air is cleaner and maintains the ideal humidity by passing it through both the air purification and dehumidification systems. The quality of indoor air has taken on greater importance than ever before. In fact, more than two-thirds of homeowners say they would consider purchasing an air filtration system if it could remove COVID-19 from their air. That’s why after rigorous testing, Lennox announced its PureAir™ S Air Purification System, with the Lennox Healthy Climate™ Carbon Clean 16® air filter, removes over 99% of the virus that causes COVID-19 from the air. Complete Control Lennox’ iComfort® S30 Ultra Smart Thermostat is the ultimate controller for precise comfort with a fully digital system  Lennox’ iComfort® S30 Ultra Smart Thermostat is the ultimate controller for precise comfort, providing homeowners with a fully digital system at their fingertips. With the S30, homeowners only need to set their ideal temperature once, and the system will work intelligently to respond to changes in temperature or humidity. The smart thermostat opens up a world of enhanced diagnostics, and even prognostics, to ensure the system stays perfectly tuned to one’s home and is quickly and accurately serviced. This feature is especially critical to 10% of homeowners who admit they’ve never serviced their HVAC system and over a quarter (26%) of homeowners who admit they don’t know how often to replace their HVAC system’s air filter. Unmatched Efficiency Energy efficiency ranks as the most important feature regarding home HVAC systems with nearly 4-in-5 (79%) of homeowners stating that having an energy-efficient home is a top priority. The Ultimate Comfort System is the most efficient system the industry has ever seen. The SLP99V Variable-Capacity Gas Furnace boasts up to a 99% gas efficiency rating, which means it converts every last bit of energy into heating the home. Additionally, the SL28XCV Air Conditioner achieves efficiencies of up to 28 SEER and has been designated as one of the Most Efficient ENERGY STAR® certified products in 2021. Beyond Quiet The System is the quietest system and is engineered to run at variable capacity and variable speed  With the pandemic forcing 43% of homeowners to work from home, a quiet HVAC system has never been more critical. In fact, more than a third (39%) of homeowners admit to wanting to turn off their heater or air conditioner because it was too loud.  The Ultimate Comfort System is the quietest system on the market and is engineered to run at variable capacity and variable speed to drastically minimize the sound of air turning on or off in the home. Additionally, a special sound-dampening system absorbs outdoor noise so one can be assured it’s operating at a noise level that is unheard of. From heating and cooling to air purification and effortless controls, every component of the Ultimate Comfort System works seamlessly together to deliver on the promise of a healthy, comfortable home. Lennox customers can feel confident they are receiving the industry’s most advanced products for consistently perfect air.

Lennox EMEA Organizes Learning Month For HVAC-R Sector
Lennox EMEA Organizes Learning Month For HVAC-R Sector

LENNOX EMEA, a company in the design and manufacture of heating, air conditioning, air treatment, and refrigeration equipment, through its three brands Lennox, Friga-Bohn, and HK Refrigeration, is hosting a content-rich ‘Learning Month’, which will run from April 15th to May 15th. Learning Month will comprise a series of free online webinars (in local languages) that provide professionals in the HVAC-R (Heating, Ventilation, Air Conditioning, and Refrigeration) industry with targeted insight and strategy to take their skills to the next level. Regulatory changes Among the primary ambition of these enlightening webinars is to provide information and guidance on new industry developments and trends. There will be a particular focus on different European regulatory changes, such as F-Gas and EcoDesign 2021, giving customers the essential keys to prepare for the high season and maximize potential gains. A comprehensive understanding of regulatory changes is vital for all professionals in the HVAC-R sector, from consultants and design engineers to installers, facility managers, and maintenance personnel. Delivered by the renowned Lennox University, each webinar focuses on a specific topic identified as an ‘area of concern/interest’ through discussion with customers. Use of A2L in refrigeration For example, the first webinar will center on the use of A2L in refrigeration applications. Taking place on April 15th and available in English, Spanish, and French, refrigeration installers and wholesalers will learn more about A2L refrigerants, their composition, and their use in line with current regulations. Relevant regulation studies will reveal the main benefits of A2L refrigerants, while participants will also discover more about the calculation for permissible refrigeration charge/load limits and the principles of risk analysis. Refrigerant transition Staying abreast of regulatory changes is paramount from the perspective of sector professionals, so this webinar presents a great opportunity to build knowledge and learn more about the refrigerant transition. HVAC Applications Installers, engineers, and end-users learn more about R32 as an A2L refrigerant, its suitability, and its applicable regulations in the webinars Subsequent webinars focus specifically on HVAC applications. For instance, on April 22nd, Lennox, through refrigerant comparison, will explain why R32 is a wise choice for rooftop units and how to achieve a smooth transition from R410A. Installers, engineers, and end-users will learn more about R32 as an A2L refrigerant, its suitability for different projects, and its applicable regulations in the webinars. Six language options are available: German, Dutch, English, Spanish, Italian and Portuguese. Refrigerant specifications On April 28th attention turns to understanding more about the specifics of the refrigerant changeover in HVAC applications. This webinar will set out how the F-Gas regulation is shaping the HVAC industry, and highlight the emergence of several lower-GWP refrigerants. Installers and engineers will hear about the impact of this trend and how to ensure a pain-free transition. The language options for this webinar are German, Dutch, English, Spanish, French, and Portuguese. Energy consumption These same language options apply to the next webinar, on May 4th, which will pinpoint the key facilitators that deliver optimized energy efficiency. Both end-users and maintenance professionals will benefit from registering for this presentation, the focus points of which include selecting the right IAQ (Indoor Air Quality) solution while managing energy consumption, upgrading fan technology, cloud-based monitoring, and EcoDesign 2021. Rooftop v/s chiller/AHU solution Rounding off Learning Month will be the webinar on May 11th: choosing between a rooftop or chiller/AHU solution. The differences between the two solutions, along with best-practice selection criteria, 1/2 will help installers, engineers, and end-users grasp the fundamentals required to reach the optimum decision. This webinar is available in German and Dutch. Ultimately, knowledge provides many opportunities, not least the chance to make astute selection decisions, optimize refrigeration and HVAC units for performance and efficiency, and become a source of advice and expertise. All those participating in any of the webinars at Learning Month will also get the opportunity to ask questions of the respective Lennox HVAC-R specialist.

Zigbee Alliance Developing Specification Standard For Connected Home Over IP
Zigbee Alliance Developing Specification Standard For Connected Home Over IP

As the Internet of Things (IoT) has evolved, the need has become obvious for stronger unity among brands and ecosystems to enable products within smart environments to work together more easily. Working to serve that need is the Zigbee Alliance, which seeks to promote collaboration in the Internet of Things by creating, evolving, and promoting universal open standards that enable all objects to connect and interact. Their effort took off when Amazon, Apple, Google and the Zigbee Alliance announced an industry working group in December 2019 to take the “best of market” technologies from leading smart home standards, portfolios and ecosystems and to develop a “super spec” that will be open, inclusive and a significant industry shift in the smart home market. smart home automation system “Zigbee Alliance has been for a while now working on openness and interoperability, which has led us to the Project Connected Home over IP (CHIP), which is looking to unify the environment, under one technology, one certification program and one logo,” says Chris LaPré, Zigbee Alliance’s IoT Solutions Architect. “It really does fuel IoT possibilities, whether in HVAC or any other sectors.” There is a stronger need for unity, which is why we are developing Project Connected Home over IP" Project CHIP is a royalty-free connectivity standard that unifies brands and ecosystems into a single smart home automation system that operates any other technology based on Internet Protocol (IP). The intent is to simplify product development for device manufacturers, broaden consumer choice, and to ensure easy discoverability, deployment and engagement to fuel connected living. unifies that environment “We have noticed that, as the IoT has evolved, there is a stronger need for unity, which is why we are developing Project Connected Home over IP,” says Jon Harros, Zigbee Alliance’s Director of Certification and Testing Programs. “It fits with the Zigbee Alliance’s goal to unify systems, and to focus on everyone using the same application at the top. It unifies that environment, whether you are integrating your system with Amazon Echo devices or connecting to Google Home.” Participating in development of Project CHIP are 125 companies of various types from around the world working together with more than 1,100 of their experts serving across sub-committees to formulate specifications and fine-tune the project. Although the technology is being developed for the home market, the specifications have been formulated with an eye toward expanding into the commercial market in the future. home system technologies Development of open, interoperable systems provides greater freedom for consumers to choose among the many technology choices on the market, without being tied to a single brand or ecosystem. Zigbee Alliance certifications and memberships span the globe, with roughly a third in Europe, a third in North America and a third in Asia. Involvement in Europe is slightly higher than the other regions. Alliance members represent manufacturing sites all over the world. Project CHIP is a newer initiative of the Zigbee Alliance, which previously developed Zigbee Pro to enable home system technologies to operate using IEEE 802.15.4 wireless signals on the 2.4GHz radio band over a self-healing true mesh network. The original Zigbee protocol is used for many applications around the world, including HVAC. smart temperature devices HVAC developers who have specific use cases should have a look at the work of the alliance Members of the Zigbee Alliance include HVAC companies such as Lennox, Stelpro and Belimo, among others. Carrier is a recent company that has joined the Zigbee Alliance. Smart thermostats, including the popular Ecobee, have used the Zigbee protocol. More than 100 different devices have been certified as thermostats or smart temperature devices.  Harros urges other HVAC companies to become more involved with the Alliance. “We want them to come and have a look to see what we are doing and get involved,” he says. “This is where the work is being done as we unify the environment and bring together all the devices and ecosystems to work together.” HVAC developers who have specific use cases should have a look at the work of the alliance, he adds. certification transfer program Among the strengths of the Zigbee Alliance are years of experience certifying products, which includes testing them and confirming that they comply with the promoted specifications and functionality. The specifications are open standards that are developed in cooperation with all the companies that are Zigbee Alliance members. Another route is the certification transfer program, in which a company chooses a certified white-label product, becomes a member of the Alliance, and then rebrands the product while retaining the certification. “It helps them get products on the market quickly while they build their own knowledge base,” says Harros. "All our work is focused on standardizing the behavior and functionality of products and making sure everyone is following the same standard to get interoperability,” says Harros. “Members all contribute to the standards.”

vfd